Incorporation of Se (IV) Complexes based on Amino Acids in Biomatrixes in Hydrogel State: Effect of the Amino Acid on the Structure and Properties of Biomatrixes for Biomedical Applications
Creators
- 1. Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo. Saltillo, Coahuila, 25280, México.
Contributors
Contact person:
- 1. Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo. Saltillo, Coahuila, 25280, México.
Description
Selenium is a non-metal that shows biological interest since it is responsible for modulating various proteins at the micronutrient level in living beings. In this work, new complexes based on the Se (IV) ion with amino acids such as phenylalanine (Se-F), histidine (Se-H) and tryptophan (Se-T) were hydrothermally synthesized and characterized. These were incorporated into biomatrixes based on semi-interpenetrated polymeric networks (Semi-IPN) of collagen-polyurethane-guar gum (CPGG) by the microemulsion process using a mass ratio of 1 wt.% with respect to collagen. The structural and crystalline characteristics that the selenium-amino acid complexes show a performance in modulating the properties of the biomatrixes under study. The results indicate that the incorporation of the complex decreases the crosslinking of the hydrogel, generating granular surfaces with porosity dependent on the type of amino acid. The CPGG Se-T biomatrix shows a swelling capacity of 10200 ± 1100 higher than the CPGG base matrix; while the CPGG Se-F and CPGG Se-T biomatrixes present slow degradation at both physiological and acidic pH. Interestingly, the matrix that includes the Se-F complex significantly stimulates the metabolic activity of L929 fibroblasts for up to 48 h, stimulating their proliferation. The fibroblasts encapsulated on these novel biomatrixes show recurrent release capacity for up to 7 days, where the structure of the CPGG Se-H biomatrix exhibits greater release from the encapsulated cells. These results demonstrate that these innovative biomatrixes could be used in biomedical applications such as dermal tissue regeneration and cell release for a specific biological fate. |
Files
83466.pdf
Files
(1.0 MB)
Name | Size | Download all |
---|---|---|
md5:15664b3ee56024d6d011984dd735e2ef
|
1.0 MB | Preview Download |
Additional details
References
- [1] Marek Kieliszek, Iqra Bano and Hamed Zare, (2022). A Comprehensive Review on Selenium and Its Effects on Human Health and Distribution in Middle Eastern Countries. Biol. Trace Elem. Res., 200: 971–987.
- [2] Marek Kieliszek, (2019). Selenium–Fascinating Microelement, Properties and Sources in Food. Molecules, 24(7): 1298.
- [3] Nazanin Zakeri, Mahnaz Rezaei kelishadi, Omid Asbaghi, Fatemeh Naeini, Maryam Afsharfar, Elahe Mirzadeh and Seyed kasra Naserizadeh, (2021). Selenium supplementation and oxidative stress: A review. Pharma Nutrition, 17: 100263.
- [4] Fernández-Martínez A. and Charlet, L., (2009). Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev. Environ. Sci. Biotechnol., 8: 81–110.
- [5] Paul Cherin and Phyllis Unger, (1967). The crystal structure of trigonal selenium. Inorg. Chem., 6(8): 1589–1591.
- [6] Joel D. Kopple, (2007). Phenylalanine and Tyrosine Metabolism in Chronic Kidney Failure. J. Nutr., 137(6): 1586S–1590S.
- [7] Margaret E Brosnan and John T Brosnan, (2020). Histidine Metabolism and Function. J. Nutr., 150: 2570S–2575S.
- [8] Jon P. Ruddick, Andrew K. Evans, David J. Nutt, Stafford L. Lightman, Graham A.W. Rook and Christopher A. Lowry, (2006). Tryptophan metabolism in the central nervous system: medical implications. Expert Rev. Mol. Med., 8(20): 1-27.
- [9] Karl Box, John E. Comer, Tom Gravestock and Martin Stuart, (2009). New Ideas about the Solubility of Drugs. Chem. Biodivers., 6(11): 1767–1788.
- [10] Jianyu Li and David J. Mooney, (2016). Designing hydrogels for controlled drug delivery. Nat. Rev. Mater., 1: 16071.
- [11] Jesús A. Claudio-Rizo, Magdalena Rangel-Argote, Pedro U. Muñoz-González, Laura E. Castellano, Jorge Delgado, Gerardo Gonzalez-García, José L. Mata-Mata and Birzabith Mendoza-Novelo, (2016). Improved properties of composite collagen hydrogels: protected oligourethanes and silica particles as modulators. J. Mater. Chem. B, 4: 6497–6509.
- [12] Martín Caldera-Villalobos, Denis A. Cabrera-Munguía, Juan J. Becerra-Rodríguez and Jesús A. Claudio-Rizo, (2022). Tailoring biocompatibility of composite scaffolds of collagen/guar gum with metal–organic frameworks. RSC Adv., 12: 3672–3686.
- [13] Martín Caldera-Villalobos, Denis A. Cabrera-Munguía, Tirso E. Flores-Guía, Gonzalo Viramontes-Gamboa, Jesús Armando Vargas-Correa, Lucia F. Cano-Salazar and Jesús A. Claudio-Rizo, (2021). Removal of water pollutants using composite hydrogels comprised of collagen, guar gum, and metal-organic frameworks. J. Polym. Res., 28: 395.
- [14] Jesús A. Claudio-Rizo, Magdalena Rangel-Argote, Laura E. Castellano, Jorge Delgado, José L. Mata-Mata and Birzabith Mendoza-Novelo, (2017). Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. Mater. Sci. Eng. C, 79: 793–801.
- [15] Pedro U. Muñoz-González, Olivia Rivera-Debernardi, Birzabith Mendoza-Novelo, Jesús A. Claudio-Rizo, José L. Mata-Mata, Isabel Delgadillo-Holtfort, Ramón Carriles, Mauricio Flores-Moreno, Gerardo González-García, Juan V. Cauich-Rodríguez, Jorge Delgado and Laura E. Castellano, (2018). Design of Silica-Oligourethane-Collagen Membranes for Inflammatory Response Modulation: Characterization and Polarization of a Macrophage Cell Line. Macromol. Biosci., 18(9): 1800099.
- [16] Se Ho Park, Ji Yong Choi, Young Hwan Lee, Joon T. Park and Hyunjoon Song, (2015). Formation of Metal Selenide and Metal–Selenium Nanoparticles using Distinct Reactivity between Selenium and Noble Metals. Chem. Asian J., 10: 1452–1456.
- [17] Stanley E. Livingstone, (1965). Metal complexes of ligands containing sulphur, selenium, or tellurium as donor atoms. Q. Rev. Chem. Soc., 19: 386–425.
- [18] Vassilios Karavelidis, Evangelos Karavas, Dimitrios Giliopoulos, Sofia Papadimitriou and Dimitrios Bikiaris, (2011). Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior. Int. J. Nanomedicine, 6: 3021–3032.
- [19] Ljupcho Prodanov, Joost te Riet, Edwin Lamers, Maciej Domanski, Regina Luttge, Jack J.W.A. van Loon, John A. Jansen and X. Frank Walboomers, (2010). The interaction between nanoscale surface features and mechanical loading and its effect on osteoblast-like cells behavior. Biomaterials, 31(30): 7758–7765.
- [20] W.E. Hennink and C.F. van Nostrum, (2012). Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev., 64: 223S–236S.
- [21] Mostafa Niazi, Effat Alizadeh, Amir Zarebkohan, Khaled Seidi, Mohammad Hosein Ayoubi-Joshaghani, Mehdi Azizi, Hamed Dadashi, Hossein Mahmudi, Tahereh Javaheri, Mehdi Jaymand, Michael R. Hamblin, Rana Jahanban-Esfahlan and Zohreh Amoozgar, (2021). Advanced Bioresponsive Multitasking Hydrogels in the New Era of Biomedicine. Adv. Funct. Mater., 31(41): 2104123.
- [22] A. Rothstein and A. D. Hayes, (1956). The relationship of the cell surface to metabolism. XIII. The cation-binding properties of the yeast cell surface. Arch. Biochem. Biophys., 63(1): 87–99.
- [23] Lindsay N. Woodard and Melissa A. Grunlan, (2018). Hydrolytic Degradation and Erosion of Polyester Biomaterials. ACS Macro. Lett., 7(8): 976–982.
- [24] Varawut Tangpasuthadol, Sanyog M Pendharkar, Richard C Peterson and Joachim Kohn, (2000). Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices. Biomaterials, 21(23): 2379–2387.
- [25] Nolte S.V., Xu W., Rennekampff H.-O. and Rodemann H.P., (2008). Diversity of Fibroblasts – A Review on Implications for Skin Tissue Engineering. Cells Tissues Organs, 187: 165–176.
- [26] Chunming Wang, Rohan R. Varshney and Dong-An Wang, (2010). Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv. Drug Deliv. Rev., 62(7-8): 699–710.