replicAnt - Plum2023 - Pose-Estimation Datasets and Trained Models
- 1. Imperial College London
- 2. The Pocket Dimension, Munich
Description
This dataset contains all recorded and hand-annotated as well as all synthetically generated data as well as representative trained networks used for semantic and instance segmentation experiments in the replicAnt - generating annotated images of animals in complex environments using Unreal Engine manuscript. Unless stated otherwise, all 3D animal models used in the synthetically generated data have been generated with the open-source photgrammetry platform scAnt peerj.com/articles/11155/. All synthetic data has been generated with the associated replicAnt project available from https://github.com/evo-biomech/replicAnt.
Abstract:
Deep learning-based computer vision methods are transforming animal behavioural research. Transfer learning has enabled work in non-model species, but still requires hand-annotation of example footage, and is only performant in well-defined conditions. To overcome these limitations, we created replicAnt, a configurable pipeline implemented in Unreal Engine 5 and Python, designed to generate large and variable training datasets on consumer-grade hardware instead. replicAnt places 3D animal models into complex, procedurally generated environments, from which automatically annotated images can be exported. We demonstrate that synthetic data generated with replicAnt can significantly reduce the hand-annotation required to achieve benchmark performance in common applications such as animal detection, tracking, pose-estimation, and semantic segmentation; and that it increases the subject-specificity and domain-invariance of the trained networks, so conferring robustness. In some applications, replicAnt may even remove the need for hand-annotation altogether. It thus represents a significant step towards porting deep learning-based computer vision tools to the field.
Benchmark data
Two pose-estimation datasets were procured. Both datasets used first instar Sungaya nexpectata (Zompro 1996) stick insects as a model species. Recordings from an evenly lit platform served as representative for controlled laboratory conditions; recordings from a hand-held phone camera served as approximate example for serendipitous recordings in the field.
For the platform experiments, walking S. inexpectata were recorded using a calibrated array of five FLIR blackfly colour cameras (Blackfly S USB3, Teledyne FLIR LLC, Wilsonville, Oregon, U.S.), each equipped with 8 mm c-mount lenses (M0828-MPW3 8MM 6MP F2.8-16 C-MOUNT, CBC Co., Ltd., Tokyo, Japan). All videos were recorded with 55 fps, and at the sensors’ native resolution of 2048 px by 1536 px. The cameras were synchronised for simultaneous capture from five perspectives (top, front right and left, back right and left), allowing for time-resolved, 3D reconstruction of animal pose.
The handheld footage was recorded in landscape orientation with a Huawei P20 (Huawei Technologies Co., Ltd., Shenzhen, China) in stabilised video mode: S. inexpectata were recorded walking across cluttered environments (hands, lab benches, PhD desks etc), resulting in frequent partial occlusions, magnification changes, and uneven lighting, so creating a more varied pose-estimation dataset.
Representative frames were extracted from videos using DeepLabCut (DLC)-internal k-means clustering. 46 key points in 805 and 200 frames for the platform and handheld case, respectively, were subsequently hand-annotated using the DLC annotation GUI.
Synthetic data
We generated a synthetic dataset of 10,000 images at a resolution of 1500 by 1500 px, based on a 3D model of a first instar S. inexpectata specimen, generated with the scAnt photogrammetry workflow. Generating 10,000 samples took about three hours on a consumer-grade laptop (6 Core 4 GHz CPU, 16 GB RAM, RTX 2070 Super). We applied 70\% scale variation, and enforced hue, brightness, contrast, and saturation shifts, to generate 10 separate sub-datasets containing 1000 samples each, which were combined to form the full dataset.
Funding
This study received funding from Imperial College’s President’s PhD Scholarship (to Fabian Plum), and is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement No. 851705, to David Labonte). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Files
replicAnt_Plum2023_Pose_Estimation.zip
Files
(32.9 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:dfab7b7f7d5c99c54c750a3dc39b2e3e
|
32.9 GB | Preview Download |