There is a newer version of the record available.

Published April 15, 2023 | Version v1.6.0
Software Open

SchlossLab/mikropml: mikropml 1.6.0

  • 1. University of Michigan
  • 2. Bristol Myers Squibb

Description

  • New functions:
    • bootstrap_performance() allows you to calculate confidence intervals for the model performance from a single train/test split by bootstrapping the test set (#329, @kelly-sovacool).
    • calc_balanced_precision() allows you to calculate balanced precision and balanced area under the precision-recall curve (#333, @kelly-sovacool).
  • Improved output from find_feature_importance() (#326, @kelly-sovacool).
    • Renamed the column names to feat to represent each feature or group of correlated features.
    • New column lower and upper to report the bounds of the empirical 95% confidence interval from the permutation test. See vignette('parallel') for an example of plotting feature importance with confidence intervals.
  • Minor documentation improvements (#323, #332, @kelly-sovacool).

Full Changelog: https://github.com/SchlossLab/mikropml/compare/v1.5.0...v1.6.0

Files

SchlossLab/mikropml-v1.6.0.zip

Files (7.3 MB)

Name Size Download all
md5:bfe68a668f015e5a89062276b15bf7c3
7.3 MB Preview Download

Additional details

Related works