Published April 15, 2023
| Version v1.6.0
Software
Open
SchlossLab/mikropml: mikropml 1.6.0
- 1. University of Michigan
- 2. Bristol Myers Squibb
Description
- New functions:
bootstrap_performance()
allows you to calculate confidence intervals for the model performance from a single train/test split by bootstrapping the test set (#329, @kelly-sovacool).calc_balanced_precision()
allows you to calculate balanced precision and balanced area under the precision-recall curve (#333, @kelly-sovacool).
- Improved output from
find_feature_importance()
(#326, @kelly-sovacool).- Renamed the column
names
tofeat
to represent each feature or group of correlated features. - New column
lower
andupper
to report the bounds of the empirical 95% confidence interval from the permutation test. Seevignette('parallel')
for an example of plotting feature importance with confidence intervals.
- Renamed the column
- Minor documentation improvements (#323, #332, @kelly-sovacool).
Full Changelog: https://github.com/SchlossLab/mikropml/compare/v1.5.0...v1.6.0
Files
SchlossLab/mikropml-v1.6.0.zip
Files
(7.3 MB)
Name | Size | Download all |
---|---|---|
md5:bfe68a668f015e5a89062276b15bf7c3
|
7.3 MB | Preview Download |
Additional details
Related works
- Is supplement to
- https://github.com/SchlossLab/mikropml/tree/v1.6.0 (URL)