Published April 12, 2023 | Version v1
Journal article Open

Unintended cation crossover influences CO2 reduction selectivity in Cu-based zero-gap electrolysers.

Description

Membrane electrode assemblies enable CO2 electrolysis at industrially relevant rates, yet their operational stability is often limited by formation of solid precipitates in the cathode pores, triggered by cation crossover from the anolyte due to imperfect ion exclusion by anion exchange membranes. Here we show that anolyte concentration affects the degree of cation movement through the membranes, and this substantially influences the behaviors of copper catalysts in catholyte-free CO2 electrolysers. Systematic variation of the anolyte (KOH or KHCO3) ionic strength produced a distinct switch in selectivity between either predominantly CO or C2+ products (mainly C2H4) which closely correlated with the quantity of alkali metal cation (K+) crossover, suggesting cations play a key role in C-C coupling reaction pathways even in cells without discrete liquid catholytes. Operando X-ray absorption and quasi in situ X-ray photoelectron spectroscopy revealed that the Cu surface speciation showed a strong dependence on the anolyte concentration, wherein dilute anolytes resulted in a mixture of Cu+ and Cu0 surface species, while concentrated anolytes led to exclusively Cu0 under similar testing conditions. These results show that even in catholyte-free cells, cation effects (including unintentional ones) significantly influence reaction pathways, important to consider in future development of catalysts and devices.

Files

s41467-023-37520-x.pdf

Files (1.5 MB)

Name Size Download all
md5:bc47310884790591bdc80a5a4ed3e9b1
1.5 MB Preview Download

Additional details

Funding

FlowPhotoChem – Heterogenous Photo(electro)catalysis in Flow using Concentrated Light: modular integrated designs for the production of useful chemicals 862453
European Commission