Dataset Open Access
Romain Loiseau;
Elliot Vincent;
Mathieu Aubry;
Loic Landrieu
We introduce a new dataset to train and evaluate parsing methods on large, uncurated aerial LiDAR scans. We use data from the French Mapping Agency associated to the LiDAR-HD project. We selected 7 scenes, covering over 7.7km2 and a total of 98 million 3D points, with diverse content and complexity, such as dense habitations, forests, or complex industrial facilities.
You can download sequences individually or use zenodo-get to download all sequences at once:
pip install zenodo-get
zenodo-get 7820686
See companion github repository and the dedicated wepage for more information.
Cite as:
@misc{loiseau2023learnable,
title={Learnable Earth Parser: Discovering 3D Prototypes in Aerial Scans},
author={Romain Loiseau and Elliot Vincent and Mathieu Aubry and Loic Landrieu},
year={2023},
eprint={2304.09704},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Acknowledgements :
Name | Size | |
---|---|---|
crop_field.zip
md5:66b22c63d636eb6c60db2499b24369d5 |
802.4 MB | Download |
forest.zip
md5:3bf07fc6a4145f9cfde61e1ffe0e7e07 |
2.1 GB | Download |
greenhouse.zip
md5:f9ca767bca408b74ce1d62557e2a8d5a |
46.1 MB | Download |
marina.zip
md5:335fea901003209c922bf69842721a64 |
17.2 MB | Download |
power_plant.zip
md5:f6014d4749ee3c528f6e4cc5c989a535 |
17.2 MB | Download |
urban.zip
md5:7c032ddbe7fa8b708b82b231b85ef7f3 |
706.9 MB | Download |
windturbine.zip
md5:fb7677212957aa4ce65639fd1a91a8c5 |
345.8 MB | Download |
Views | 13 |
Downloads | 0 |
Data volume | 0 Bytes |
Unique views | 11 |
Unique downloads | 0 |