Roadmap for edge AI: a Dagstuhl perspective
Creators
- Ding, Aaron Yi1
- Peltonen, Ella2
- Meuser, Tobias3
- Aral, Atakan4
- Becker, Christian5
- Dustdar, Schahram6
- Hiessl, Thomas6
- Kranzlmüller, Dieter7
- Liyanage, Madhusanka8
- Maghsudi, Setareh9
- Mohan, Nitinder10
- Ott, Jörg10
- Rellermeyer, Jan S.11
- Schulte, Stefan12
- Schulzrinne, Henning13
- Solmaz, Gürkan14
- Tarkoma, Sasu15
- Varghese, Blesson16
- Wolf, Lars17
- 1. TU Delft
- 2. University of Oulu
- 3. TU Darmstadt
- 4. University of Vienna
- 5. University of Mannheim
- 6. TU Wien
- 7. LMU Munich
- 8. University College Dublin
- 9. University of Tübingen
- 10. TU Munich
- 11. Leibniz University Hannover
- 12. Hamburg University of Technology
- 13. Columbia University
- 14. NEC Labs Europe
- 15. University of Helsinki
- 16. University of St Andrews
- 17. TU Braunschweig
Description
Based on the collective input of Dagstuhl Seminar (21342), this paper presents a comprehensive discussion on AI methods and capabilities in the context of edge computing, referred as Edge AI. In a nutshell, we envision Edge AI to provide adaptation for data-driven applications, enhance network and radio access, and allow the creation, optimisation, and deployment of distributed AI/ML pipelines with given quality of experience, trust, security and privacy targets. The Edge AI community investigates novel ML methods for the edge computing environment, spanning multiple sub-fields of computer science, engineering and ICT. The goal is to share an envisioned roadmap that can bring together key actors and enablers to further advance the domain of Edge AI.
Files
3523230.3523235.pdf
Files
(596.1 kB)
Name | Size | Download all |
---|---|---|
md5:0def8cffdb299244cadd70ef1de3aafb
|
596.1 kB | Preview Download |