The Effect of Dexpanthenol Treatment on Renal Parenchymal Injury in Rats with Induced Renovascular Occlusion
Creators
- 1. Department of Urology, Uşak University Faculty of Medicine, Uşak, Türkiye.
- 2. Department of Medical Biochemistry, Dışkapı Yıldırım Beyazıt Training and Research Hospital, University of Health Sciences, Ankara, Türkiye.
- 3. Department of Nutrition and Dietetics, Faculty of Health Science, Hasan Kalyoncu University, Gaziantep, Türkiye.
- 4. Department of Neonatology, Ankara City Hospital, University of Health Sciences, Ankara, Türkiye.
- 5. Department of Pathology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, University of Health Sciences, Ankara, Türkiye.
Description
Abstract
Kidney damage due to ischemia-reperfusion injury (IRI) is a serious cause of morbidity and mortality. We induced an experimental kidney ischemia-reperfusion model in rats where intraperitoneal dexpanthenol were given and compared to controls in terms of oxidative stress, tubular damage, apoptosis, and its effect on renal inflammation. Twelve-week-old male albino Wistar rats were used for creating the experimental model and the study sample were divided into three groups (n=16); control group (intraperitoneal 2cc/kg saline was injected), IRI group and IRI+dexpanthenol group via intraperitoneal injection. Blood samples were obtained from rats 24 hours after perfusion and their left kidneys were removed. In order to determine the percentage of apoptotic cells, a total of 100 cells were counted in each region and the number of cells with caspase-3 positivity was recorded for each region. Mortality was lower, although not statistically significant in the IRI+dexpanthenol group (n=3; 18.8%) compared to the IRI group (n=6; 37.5%) (p=0.216). In addition, kidney parenchyma and tubular damages were significantly lower in the dexpanthenol group compared to the IRI group (p<0.05). Dexpanthenol significantly decreased oxidative stress and inflammation. Caspase-3 positive stained cell numbers were lower in the dexpanthenol group and also apoptosis rates were significantly lower (p<0.05). Dexpanthenol treatment in kidney ischemia-reperfusion models showed significant recovery in kidney tubular cell and parenchyma damages, apoptosis, oxidative stress, and inflammation. These results show us that dexpanthenol treatment can be a promising alternative in improving the prognosis of adults with kidney IRI.
Özet
İskemi-reperfüzyon injürisine (IRI) bağlı böbrek hasarı ciddi bir morbidite ve mortalite nedenidir. İntraperitoneal dekspantenol verilen ratlarda deneysel bir böbrek iskemi-reperfüzyon modeli oluşturduk ve oksidatif stres, tübüler hasar, apoptoz ve renal inflamasyon üzerindeki etkisi açısından kontrollerle karşılaştırdık. Deneysel modelin oluşturulmasında 12 haftalık erkek albino Wistar ratlar kullanıldı ve çalışma örneklemi 3 gruba ayrıldı (n=16); kontrol grubu (intraperitoneal 2cc/kg salin enjekte edildi), IRI grubu ve intraperitoneal enjeksiyon uygulaması ile oluşturulan IRI+dekspantenol grubu. Perfüzyondan 24 saat sonra ratlardan kan örnekleri toplandı ve sol böbrekleri alındı. Apoptotik hücre yüzdesini belirlemek için her bölgede toplam 100 hücre sayıldı ve her bölge için kaspaz-3 pozitifliği olan hücre sayısı kaydedildi. Mortalite IRI+dekspantenol grubunda (n=3; 18.8), IRI grubuna (n=6; %37.5) göre istatistiksel olarak anlamlı düzeyde olmamakla beraber daha düşüktü (p=0.216). Ayrıca böbrek parankimi ve tübüler hasarlar dekspantenol grubunda IRI grubuna göre anlamlı olarak daha düşüktü (p<0.05). Dekspantenol, oksidatif stresi ve enflamasyonu önemli ölçüde azaltmıştı. Dekspantenol grubunda kaspaz-3 pozitif boyanan hücre sayıları ve apoptoz oranları anlamlı olarak düşüktü (p<0.05). Böbrek iskemi-reperfüzyon modellerinde dekspantenol tedavisi, böbrek tübüler hücre ve parankim hasarlarında, apoptozda, oksidatif streste ve inflamasyonda önemli iyileşme gösterdi. Bu sonuçlar bize dekspantenol tedavisinin böbrek IRI'si olan yetişkinlerin prognozunu iyileştirmede umut verici bir alternatif olabileceğini göstermektedir.
Notes
Files
jmvi.2023.69.pdf
Files
(531.3 kB)
Name | Size | Download all |
---|---|---|
md5:67f4289dbd7097e51904903675868f4c
|
531.3 kB | Preview Download |
Additional details
References
- 1. Aktan ÖA, Yalçın SA. Ischemia-reperfusion injury, reactive oxygen metabolites and the surgeon. Turk J Med Sci 1998; 1-5.
- 2. Guneli E, Cavdar Z, Islekel H, Sarioglu S, Erbayraktar S, Kiray M, et al. Erythropoietin protects the intestine against ischemia / reperfusion injury in rats. Mol Med 2007; 13(9-10): 509-17. [Crossref] [PubMed]
- 3. Mallick IH, Yang WX, Winslet MC, Seifalian AM. Pyrrolidine dithiocarbamate reduces ischemia-reperfusion injury of the small intestine. World J Gastroenterol 2005; 11(46): 7308-13. [Crossref] [PubMed]
- 4. Loftus EV Jr, Tremaine WJ, Nelson RA, Shoemaker JD, Sandborn WJ, Phillips SF, et al. Dexpanthenol enemas in ulcerative colitis: a pilot study. Mayo Clin Proc 1997; 72(7): 616-20. [Crossref] [PubMed]
- 5. Abiko Y, Tomikawa M, Shimizu M. Enzymatic conversion of pantothenylalcohol to pantothenic acid. J Vitaminol (Kyoto) 1969; 15(1): 59-69. [Crossref] [PubMed]
- 6. Slyshenkov VS, Piwocka K, Sikora E, Wojtczak L. Pantothenic acid protects jurkat cells against ultraviolet light-induced apoptosis. Free Radic Biol Med 2001; 30(11): 1303-10. [Crossref] [PubMed]
- 7. Slyshenkov VS, Dymkowska D, Wojtczak L. Pantothenic acid and pantothenol increase biosynthesis of glutathione by boosting cell energetics. FEBS Lett 2004; 569(1-3): 169-72. [Crossref] [PubMed]
- 8. Jessop CE, Bulleid NJ. Glutathione directly reduces an oxidoreductase in the endoplasmic reticulum of mammalian cells. J Biol Chem 2004; 279(53): 55341-7. [Crossref] [PubMed]
- 9. Wojtczak L, Slyshenkov VS. Protection by pantothenic acid against apoptosis and cell damage by oxygen free radicals--the role of glutathione. Biofactors 2003; 17(1-4): 61-73. [Crossref] [PubMed]
- 10. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75. [PubMed]
- 11. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988; 34(3): 497-500. [PubMed]
- 12. Koyuncu I, Kocyigit A, Gonel A, Arslan E, Durgun M. The Protective Effect of Naringenin-Oxime on Cisplatin-Induced Toxicity in Rats. Biochem Res Int 2017; 2017: 9478958. [Crossref] [PubMed]
- 13. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005; 38(12): 1103-11. [Crossref] [PubMed]
- 14. Witko-Sarsat V, Gausson V, Nguyen AT, Touam M, Drüeke T, Santangelo F, et al. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney Int 2003; 64(1): 82-91. [Crossref] [PubMed]
- 15. Krawisz JE, Sharon P, Stenson WF. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 1984; 87(6): 1344-50. [PubMed]
- 16. Thomas DP, Roberts HR. Hypercoagulability in venous and arterial thrombosis. Ann Intern Med 1997; 126(8): 638-44. [Crossref] [PubMed]
- 17. Rosendaal FR. Risk factors for venous thrombotic disease. Thromb Haemost 1999; 82(2): 610-9. [PubMed]
- 18. Aguilar A, Alvarez-Vijande R, Capdevila S, Alcoberro J, Alcaraz A. Antioxidant patterns (superoxide dismutase, glutathione reductase, and glutathione peroxidase) in kidneys from non-heart-beating-donors: experimental study. Transplant Proc 2007; 39(1): 249-52. [Crossref] [PubMed]
- 19. Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci 2004; 49(9): 1359-77. [Crossref] [PubMed]
- 20. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014; 2014: 360438. [Crossref] [PubMed]
- 21. Ebner F, Heller A, Rippke F, Tausch I. Topical use of dexpanthenol in skin disorders. Am J Clin Dermatol 2002; 3(6): 427-33. [Crossref] [PubMed]
- 22. Biro K, Thaçi D, Ochsendorf FR, Kaufmann R, Boehncke WH. Efficacy of dexpanthenol in skin protection against irritation: a double-blind, placebo-controlled study. Contact Dermatitis 2003; 49(2): 80-4. [Crossref] [PubMed]
- 23. Romiti R, Romiti N. Dexpanthenol cream significantly improves mucocutaneous side effects associated with isotretinoin therapy. Pediatr Dermatol 2002; 19(4): 368. [Crossref] [PubMed]
- 24. Etensel B, Ozkisacik S, Ozkara E, Karul A, Oztan O, Yazici M, et al. Dexpanthenol attenuates lipid peroxidation and testicular damage at experimental ischemia and reperfusion injury. Pediatr Surg Int 2007; 23(2): 177-81. [Crossref] [PubMed]
- 25. Ahmed SM, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis 2017; 1863(2): 585-97. [Crossref] [PubMed]
- 26. Fu C, Zheng Y, Zhu J, Chen B, Lin W, Lin K, et al. Lycopene Exerts Neuroprotective Effects After Hypoxic-Ischemic Brain Injury in Neonatal Rats via the Nuclear Factor Erythroid-2 Related Factor 2/Nuclear Factor-κ-Gene Binding Pathway. Front Pharmacol 2020; 11: 585898. [Crossref] [PubMed]
- 27. Zhao M, Zhu P, Fujino M, Zhuang J, Guo H, Sheikh I, et al. Oxidative Stress in Hypoxic-Ischemic Encephalopathy: Molecular Mechanisms and Therapeutic Strategies. Int J Mol Sci 2016; 17(12): 2078. [Crossref] [PubMed]
- 28. Coimbra-Costa D, Alva N, Duran M, Carbonell T, Rama R. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol 2017; 12: 216-25. [Crossref] [PubMed]
- 29. Ulrich K, Jakob U. The role of thiols in antioxidant systems. Free Radic Biol Med 2019; 140: 14-27. [Crossref] [PubMed]
- 30. Tang J, Zhang B, Liang S, Wu Y, Feng Y, Guo Z, et al. Effects of pantothenic acid on growth performance and antioxidant status of growing male white Pekin ducks. Poult Sci 2020; 99(9): 4436-41. [Crossref] [PubMed]
- 31. Singhi S, Johnston M. Recent advances in perinatal neuroprotection. F1000Res 2019; 8: F1000 Faculty Rev-2031. [Crossref] [PubMed]
- 32. Zakaria MM, Hajipour B, Khodadadi A, Afshari F. Ameliorating effects of dexpanthenol in cerebral ischaemia reperfusion induced injury in rat brain. J Pak Med Assoc 2011; 61(9): 889-92. [PubMed]
- 33. Helbock HJ, Beckman KB, Ames BN. 8-Hydroxydeoxyguanosine and 8-hydroxyguanine as biomarkers of oxidative DNA damage. Methods Enzymol 1999; 300: 156-66. [Crossref] [PubMed]
- 34. Liu Z, Yao X, Jiang W, Li W, Zhu S, Liao C, et al. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. J Neuroinflammation 2020; 17(1): 90. [Crossref] [PubMed]
- 35. Lee BS, Jung E, Lee Y, Chung SH. Hypothermia decreased the expression of heat shock proteins in neonatal rat model of hypoxic ischemic encephalopathy. Cell Stress Chaperones 2017; 22(3): 409-15. [Crossref] [PubMed]