Published January 24, 2023 | Version v1
Journal article Open

COVID-19 and Support Products: The Effects of Nutritional Immunity

  • 1. Istanbul Medipol University Faculty of Medicine, Istanbul, Türkiye.
  • 2. Department of Medical Pharmacology, Istanbul Medipol University Faculty of Medicine & Medipol University Research Institute for Health Sciences and Technologies, Istanbul, Türkiye.

Description

Özet

Beslenme, bağışıklık sistemi ve enfeksiyon hastalıkları arasında karşılıklı süregelen bir etkileşim söz konusudur. Yetersiz ve dengesiz beslenme bağışıklık sisteminin savunma etkinliğini azaltıp enfeksiyon hastalıklarına yakalanma riskinde ve hastalık semptomlarının şiddetinde artışa neden olabilir. Aralık 2019’da ortaya çıkan ve kısa süre içerisinde Dünya Sağlık Örgütü (DSÖ) tarafından pandemi olarak ilan edilen COVID-19 (koronavirus hastalığı-2019) salgını son birkaç yılda dünya genelindeki en önemli halk sağlığı sorunu haline gelmiştir. COVID-19 enfeksiyonu çoğu kişide asemptomatik olarak veya hafif semptomlarla geçirilirken, bazı kişilerde şiddetli semptomların eşlik ettiği ağır hastalık tabloları ile seyretmekte ve bu farklılığın başlıca kişilerin efektif immün yanıtları ile ilişkili olduğu bilinmektedir. COVID-19 enfeksiyonlarının tedavisi için henüz terapötik etkinliği kanıtlanmış kolay erişilebilir bir antiviral ilaç bulunmamaktadır. Bu nedenle, bağışıklık sistemini güçlendirmek ve hastalıkla ilişkili şikayetleri ve olumsuz klinik etkileri azaltmak için immün sistemi destekleyici terapötik seçenekleri aramaya yönelik çabalar artan bir ilgi konusu olmuştur. Viral enfeksiyonların erken dönemlerinde bulaşı ve invazyonu önlemekle görevli doğal (innate) bağışıklık yanıt virüsü ortadan kaldırmaya yönelik ilk savunma hattı olduğu gibi, adaptif immün yanıtın etkin ve dengeli aktivasyon sürecinde kritik öneme sahiptir. Bu nedenle doğal immüniteyi güçlendirecek ve edinsel immün yanıtı modüle edebilen antimikrobiyal ve antioksidan özellikli mineral, vitamin, tıbbi bitkiler ve probiyotikler erişilebilir, kolay uygulanabilir ve etkin koruyucu tedbirlerden biri olarak karşımıza çıkmaktadır. Bu derleme makalede, dünya genelinde büyük bir sorun haline gelen COVID-19 hastalığına karşı besin takviyelerinin tedavi amaçlı veya destekleyici olarak kullanım etkinliği tartışılmıştır.

Abstract

There is an ongoing interaction between nutrition, immune system, and infectious diseases. Inadequate and unbalanced nutrition may reduce the defense efficiency of the immune system and increase the risk of contracting infectious diseases and the severity of disease symptoms. COVID-19 (coronavirus disease-2019) outbreak, which emerged in December 2019 and was declared a pandemic by the World Health Organization (WHO) in a short time, has become the most important public health problem worldwide in the last few years. COVID-19 is asymptomatic or causes with mild symptoms in most people, however, it progresses to severe illness accompanied by serious symptoms in some people, and it is known that this difference is mainly related to the effective immune responses of individuals. There is currently any easily accessible antiviral drug with proven therapeutic efficacy for the prevention and treatment of COVID-19 disease. Therefore, there has been an increasing effort to explore immune-supportive additional therapeutic options to strengthen the immune system and reduce disease-related complaints. The innate immune response, which is responsible for preventing transmission and invasion in the early stages of viral infections, is the first line of defense to eliminate the virus, and it is critical in the effective and balanced activation of the adaptive immune response. Therefore, the use of antimicrobial and antioxidant minerals, vitamins, medicinal plants, and probiotics that will strengthen the immune response is one of the accessible, easily applicable, and effective preventive measures. In this review, the effectiveness of therapeutic and supportive nutritional supplements against COVID-19 disease, which has become a major problem worldwide, has been discussed.

Notes

COVID-19 ve Destek Ürünler: Beslenme Bağışıklığının Etkileri

Files

jmvi.2023.66.pdf

Files (509.2 kB)

Name Size Download all
md5:a4a4b34e931d051ff1127922cf874810
509.2 kB Preview Download

Additional details

References

  • ‎1. Güner Ö, Buzgan T. The First Three Months of the COVID-19 Pandemic: The World Health Organization's ‎Response. J Mol Virol Immunol 2021; 2(3): 86-101. [Crossref]‎
  • ‎2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel ‎coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506. [Crossref] [PubMed] ‎
  • ‎3. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute ‎respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; ‎‎5(4): 536-44. [Crossref] [PubMed] ‎
  • ‎4. Araf Y, Akter F, Tang YD, Fatemi R, Parvez MSA, Zheng C, et al. Omicron variant of SARS-CoV-2: Genomics, ‎transmissibility, and responses to current COVID-19 vaccines. J Med Virol 2022; 94(5): 1825-32. [Crossref] ‎‎[PubMed] ‎
  • ‎5. Gündüz A, Türkoğlu G, Yakupoğulları Y. Symptomatic Reinfections in COVID-19 Patients: A Retrospective ‎Study in the Pre-Vaccination Period. J Mol Virol Immunol 2021; 2(3): 107-14. [Crossref] ‎
  • ‎6. Arora P, Cossmann A, Schulz SR, Ramos GM, Stankov MV, Jäck HM, et al. Neutralisation sensitivity of the ‎SARS-CoV-2 XBB.1 lineage. Lancet Infect Dis 2023: S1473-3099(22)00831-3. [Crossref] [PubMed] ‎
  • ‎7. Hui KPY, Cheung MC, Perera RAPM, Ng KC, Bui CHT, Ho JCW, et al. Tropism, replication competence, and ‎innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis ‎in ex-vivo and in-vitro cultures. Lancet Respir Med 2020; 8(7): 687-95. [Crossref] [PubMed] ‎
  • ‎8. Alipoor SD, Mortaz E, Jamaati H, Tabarsi P, Bayram H, Varahram M, et al. COVID-19: Molecular and Cellular ‎Response. Front Cell Infect Microbiol 2021; 11: 563085. [Crossref] [PubMed] ‎
  • ‎9. Taha M, Haboub L. Novel Coronavirus Disease (COVID-19): Causes, Pathogenesis and Efforts of Treatment. ‎FABAD J Pharm Sci 2020; 45(3): 279-96. ‎
  • ‎10. Wong RSY. Inflammation in COVID-19: from pathogenesis to treatment. Int J Clin Exp Pathol 2021; 14(7): ‎‎831-44. [PubMed] ‎
  • ‎11. Atluri S, Manchikanti L, Hirsch JA. Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a ‎Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use. Pain ‎Physician 2020; 23(2): E71-E83. [PubMed] ‎
  • ‎12. Karakuş H. Innate Immune Response and Immune Evasion in Viral Infections. J Mol Virol Immunol 2022; ‎‎3(1): 1-19. [Crossref] ‎
  • ‎13. Düzgün Ü, Sarı O, Karadaş Ö. Evaluation of Biomarkers and Clinical Course in Patients Developing Neurologic ‎Disorders due to COVID-19. J Mol Virol Immunol 2022; 3(4): 177-87. [Crossref] ‎
  • ‎14. Güler Sönmez T, Fidancı İ, Ayhan Başer D, Aksoy H, Yengil Taci D, Cankurtaran M. Analysis of COVID-19 ‎Patient Follow-Ups. Life Med Sci 2022; 1(2): 55-61. [Crossref] ‎
  • ‎15. Bolat A, Cüce F, Şenoğlu MÇ, Şahiner A, Ünay B. Efficacy of Clinical and Chest Radiography Features in ‎Predicting Patient Prognosis in Children with COVID-19. J Mol Virol Immunol 2021; 2(4): 159-67. [Crossref] ‎
  • ‎16. Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: addressing a ‎pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct Target Ther 2020; ‎‎5(1): 84. [Crossref] [PubMed] ‎
  • ‎17. Li D, Chen Y, Liu H, Jia Y, Li F, Wang W, et al. Immune dysfunction leads to mortality and organ injury in ‎patients with COVID-19 in China: insights from ERS-COVID-19 study. Signal Transduct Target Ther 2020; 5(1): ‎‎62. [Crossref] [PubMed] ‎
  • ‎18. Florindo HF, Kleiner R, Vaskovich-Koubi D, Acúrcio RC, Carreira B, Yeini E, et al. Immune-mediated ‎approaches against COVID-19. Nat Nanotechnol 2020; 15(8): 630-45. [Crossref] [PubMed] ‎
  • ‎19. Zhand S, Saghaeian Jazi M, Mohammadi S, Tarighati Rasekhi R, Rostamian G, Kalani MR, et al. COVID-19: ‎The Immune Responses and Clinical Therapy Candidates. Int J Mol Sci 2020; 21(15): 5559. [Crossref] [PubMed]‎
  • ‎20. Mathieu E, Dattani S, Ritchie H, Roser M. Coronavirus (COVID-19) Vaccinations—Statistics and Research. Our ‎World in Data (OWID), Global Change Data Lab, University of Oxford, England (ourworldindata.org). Available at: ‎https://ourworldindata.org/covid-vaccinations [Accessed December 30, 2022]. ‎
  • ‎21. Güzel Tanoğlu E. Production and Distribution of mRNA Vaccines: SARS-CoV-2 Experience. J Mol Virol ‎Immunol 2020; 1(3): 27-34. [Crossref] ‎
  • ‎22. Farzana M, Shahriar S, Jeba FR, Tabassum T, Araf Y, Ullah MA, et al. Functional food: complementary to fight ‎against COVID-19. Beni Suef Univ J Basic Appl Sci 2022; 11(1): 33. [Crossref] [PubMed] ‎
  • ‎23. Boyraz Ö, Alataş H, Toğuç H, Acun Delen L, Çavdar B, Nacar E, et al. The Effect of Mediterranean Diet ‎Compliance on COVID-19 Symptoms and Disease Severity. J Mol Virol Immunol 2022; 3(3): 113-20. [Crossref] ‎
  • ‎24. Guillin OM, Vindry C, Ohlmann T, Chavatte L. Selenium, Selenoproteins and Viral Infection. Nutrients 2019; ‎‎11(9): 2101. [Crossref] [PubMed] ‎
  • ‎25. Okçu M, Tuncay F, Koçak FA, Doğru YG, Karakuzu Güngör Z, et al. The Effect of Hemoglobin, Folate, Vitamin ‎B12, and 25 (OH) Vitamin D3 Levels on Function, Disability, Pain, and Balance in Patients with Post-Stroke ‎Hemiplegia. J PMR Sci 2022; 25(3): 286-92. [Crossref]‎
  • ‎26. Darnton-Hill I. Public Health Aspects in the Prevention and Control of Vitamin Deficiencies. Curr Dev Nutr ‎‎2019; 3(9): nzz075. [Crossref] [PubMed] ‎
  • ‎27. Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C, Ranasinghe P. Enhancing immunity in viral ‎infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr 2020; 14(4): 367-82. [Crossref] ‎‎[PubMed] ‎
  • ‎28. Wang JZ, Zhang RY, Bai J. An anti-oxidative therapy for ameliorating cardiac injuries of critically ill COVID-‎‎19-infected patients. Int J Cardiol 2020; 312: 137-8. [Crossref] [PubMed] ‎
  • ‎29. Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of Vitamin A in the Immune System. J Clin Med 2018; 7(9): ‎‎258. [Crossref] [PubMed] ‎
  • ‎30. Gasmi A, Noor S, Tippairote T, Dadar M, Menzel A, Bjørklund G. Individual risk management strategy and ‎potential therapeutic options for the COVID-19 pandemic. Clin Immunol 2020; 215: 108409. [Crossref] [PubMed] ‎
  • ‎31. Yilmaz G, Bulut H, Ozden Omaygenc D, Akca A, Can E, Tuten N, et al. Baseline serum vitamin A and vitamin ‎C levels and their association with disease severity in COVID-19 patients. Acta Biomed 2023; 94(1): e2023007. ‎‎[Crossref] [PubMed] ‎
  • ‎32. Timoneda J, Rodríguez-Fernández L, Zaragozá R, Marín MP, Cabezuelo MT, Torres L, et al. Vitamin A ‎Deficiency and the Lung. Nutrients 2018; 10(9): 1132. [Crossref] [PubMed] ‎
  • ‎33. Calder PC, Carr AC, Gombart AF, Eggersdorfer M. Optimal Nutritional Status for a Well-Functioning Immune ‎System Is an Important Factor to Protect against Viral Infections. Nutrients 2020; 12(4): 1181. [Crossref] ‎‎[PubMed] ‎
  • ‎34. Ayseli YI, Aytekin N, Buyukkayhan D, Aslan I, Ayseli MT. Food policy, nutrition and nutraceuticals in the ‎prevention and management of COVID-19: Advice for healthcare professionals. Trends Food Sci Technol 2020; ‎‎105: 186-99. [Crossref] [PubMed] ‎
  • ‎35. Mikkelsen K, Apostolopoulos V. Vitamin B12, Folic Acid, and the Immune System. In: Mahmoudi M, Rezaei N ‎‎(eds), Nutrition and Immunity. 2019, Springer International Publishing, Switzerland. pp:103-14. [Crossref] ‎
  • ‎36. Kunisawa J, Kiyono H. Vitamin-mediated regulation of intestinal immunity. Front Immunol 2013; 4: 189. ‎‎[Crossref] [PubMed] ‎
  • ‎37. Acosta-Elias J, Espinosa-Tanguma R. The Folate Concentration and/or Folic Acid Metabolites in Plasma as ‎Factor for COVID-19 Infection. Front Pharmacol 2020; 11: 1062. [Crossref] [PubMed] ‎
  • ‎38. Topless R, Green R, Morgan SL, Robinson P, Merriman T, Gaffo AL. Folic acid and methotrexate use and their ‎association with COVID-19 diagnosis and mortality: a case-control analysis from the UK Biobank. BMJ Open 2022; ‎‎12(8): e062945. [Crossref] [PubMed] ‎
  • ‎39. Munteanu C, Schwartz B. The relationship between nutrition and the immune system. Front Nutr 2022; 9: ‎‎1082500. [Crossref] [PubMed] ‎
  • ‎40. Skacel PO, Chanarin I. Impaired chemiluminescence and bactericidal killing by neutrophils from patients with ‎severe cobalamin deficiency. Br J Haematol 1983; 55(2): 203-15. [Crossref] [PubMed] ‎
  • ‎41. Partearroyo T, Úbeda N, Montero A, Achón M, Varela-Moreiras G. Vitamin B12 and Folic Acid Imbalance ‎Modifies NK Cytotoxicity, Lymphocytes B and Lymphoprolipheration in Aged Rats. Nutrients 2013; 5(12): 4836-‎‎48. [Crossref] ‎
  • ‎42. Narayanan N, Nair DT. Vitamin B12 may inhibit RNA-dependent-RNA polymerase activity of nsp12 from the ‎SARS-CoV-2 virus. IUBMB Life 2020; 72(10): 2112-20. [Crossref] [PubMed] ‎
  • ‎43. Carr AC. A new clinical trial to test high-dose vitamin C in patients with COVID-19. Crit Care 2020; 24(1): ‎‎133. [Crossref] [PubMed] ‎
  • ‎44. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health 2020; 3(1): 74-92. [Crossref] [PubMed] ‎
  • ‎45. Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 ‎‎(COVID-19)? Med Drug Discov 2020; 5: 100028. [Crossref] [PubMed] ‎
  • ‎46. Xing Y, Zhao B, Yin L, Guo M, Shi H, Zhu Z, et al. Vitamin C supplementation is necessary for patients with ‎coronavirus disease: An ultra-high-performance liquid chromatography-tandem mass spectrometry finding. J ‎Pharm Biomed Anal 2021; 196: 113927. [Crossref] [PubMed] ‎
  • ‎47. Zhao B, Ling Y, Li J, Peng Y, Huang J, Wang Y, et al. Beneficial aspects of high dose intravenous vitamin C on ‎patients with COVID-19 pneumonia in severe condition: a retrospective case series study. Ann Palliat Med 2021; ‎‎10(2): 1599-609. [Crossref] [PubMed] ‎
  • ‎48. Aygun H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn Schmiedebergs ‎Arch Pharmacol 2020; 393(7): 1157-60. [Crossref] [PubMed] ‎
  • ‎49. Shah Alam M, Czajkowsky DM, Aminul Islam M, Ataur Rahman M. The role of vitamin D in reducing SARS-‎CoV-2 infection: An update. Int Immunopharmacol 2021; 97: 107686. [Crossref] [PubMed]‎
  • ‎50. Teymoori-Rad M, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral infections. Rev ‎Med Virol 2019; 29(2): e2032. [Crossref] [PubMed] ‎
  • ‎51. Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, et al. Vitamin D supplementation to ‎prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ ‎‎2017; 356: i6583. [Crossref] [PubMed] ‎
  • ‎52. Lips P, Cashman KD, Lamberg-Allardt C, Bischoff-Ferrari HA, Obermayer-Pietsch B, Bianchi ML, et al. Current ‎vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position ‎statement of the European Calcified Tissue Society. Eur J Endocrinol 2019; 180(4): P23-P54. [Crossref] [PubMed] ‎
  • ‎53. Ilie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection ‎and mortality. Aging Clin Exp Res 2020; 32(7): 1195-8. [Crossref] [PubMed] ‎
  • ‎54. Alipio M. Vitamin D supplementation could possibly improve clinical outcomes of patients infected with ‎Coronavirus-2019 (COVID-19). SSRN Electronic Journal 2020; 3571484. [Crossref] ‎
  • ‎55. Tan CW, Ho LP, Kalimuddin S, Cherng BPZ, Teh YE, Thien SY, et al. Cohort study to evaluate the effect of ‎vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with ‎coronavirus (COVID-19). Nutrition 2020; 79-80: 111017. [Crossref] [PubMed] ‎
  • ‎56. Park JH, Lee Y, Choi M, Park E. The Role of Some Vitamins in Respiratory-related Viral Infections: A Narrative ‎Review. Clin Nutr Res 2023; 12(1): 77-89. [Crossref] [PubMed] ‎
  • ‎57. Lewis ED, Meydani SN, Wu D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB ‎Life 2019; 71(4): 487-94. [Crossref] [PubMed] ‎
  • ‎58. Meydani SN, Han SN, Wu D. Vitamin E and immune response in the aged: molecular mechanisms and clinical ‎implications. Immunol Rev 2005; 205(1): 269-84. [Crossref] [PubMed] ‎
  • ‎59. Lee GY, Han SN. The Role of Vitamin E in Immunity. Nutrients 2018; 10(11): 1614. [Crossref] [PubMed] ‎
  • ‎60. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr 2019; 10(4): ‎‎696-710. [Crossref] [PubMed] ‎
  • ‎61. Xie Y, Xu J, Zhou D, Guo M, Zhang M, Gao Y, et al. Micronutrient perspective on COVID-19: Umbrella review ‎and reanalysis of meta-analyses. Crit Rev Food Sci Nutr 2023: 1-19. [Crossref] [PubMed]‎
  • ‎62. Carlucci PM, Ahuja T, Petrilli C, Rajagopalan H, Jones S, Rahimian J. Zinc sulfate in combination with a zinc ‎ionophore may improve outcomes in hospitalized COVID-19 patients. J Med Microbiol 2020; 69(10): 1228-34. ‎‎[Crossref] [PubMed] ‎
  • ‎63. Ben Abdallah S, Mhalla Y, Trabelsi I, Sekma A, Youssef R, Bel Haj Ali K, et al. Twice-Daily Oral Zinc in the ‎Treatment of Patients With Coronavirus Disease 2019: A Randomized Double-Blind Controlled Trial. Clin Infect Dis ‎‎2023; 76(2): 185-91. [Crossref] [PubMed] ‎
  • ‎64. Hiffler L, Rakotoambinina B. Selenium and RNA Virus Interactions: Potential Implications for SARS-CoV-2 ‎Infection (COVID-19). Front Nutr 2020; 7: 164. [Crossref] [PubMed] ‎
  • ‎65. Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP. Association between regional selenium status and ‎reported outcome of COVID-19 cases in China. Am J Clin Nutr 2020; 111(6): 1297-9. [Crossref] [PubMed]‎
  • ‎66. Veyisoglu N, Mendes B. Mineral supplements in the coronavirus disease. Sağlık Bilimlerinde İleri Araştırmalar ‎Dergisi 2022; 5(1): 50-4. [Crossref] ‎
  • ‎67. Girelli D, Marchi G, Busti F, Vianello A. Iron metabolism in infections: Focus on COVID-19. Semin Hematol ‎‎2021; 58(3): 182-7. [Crossref] [PubMed] ‎
  • ‎68. Gomes AC, Moreira AC, Mesquita G, Gomes MS. Modulation of Iron Metabolism in Response to Infection: ‎Twists for All Tastes. Pharmaceuticals (Basel) 2018; 11(3): 84. [Crossref] [PubMed] ‎
  • ‎69. Razzaque MS. Magnesium: Are We Consuming Enough? Nutrients 2018; 10(12): 1863. [Crossref] [PubMed] ‎
  • ‎70. Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System-Working in Harmony to ‎Reduce the Risk of Infection. Nutrients 2020; 12(1): 236. [Crossref] [PubMed] ‎
  • ‎71. Trapani V, Rosanoff A, Baniasadi S, Barbagallo M, Castiglioni S, Guerrero-Romero F, et al. The relevance of ‎magnesium homeostasis in COVID-19. Eur J Nutr 2022; 61(2): 625-36. [Crossref] [PubMed] ‎
  • ‎72. Nouri-Majd S, Ebrahimzadeh A, Mousavi SM, Zargarzadeh N, Eslami M, Santos HO, et al. Higher Intake of ‎Dietary Magnesium Is Inversely Associated With COVID-19 Severity and Symptoms in Hospitalized Patients: A ‎Cross-Sectional Study. Front Nutr 2022; 9: 873162. [Crossref] [PubMed] ‎
  • ‎73. Raha S, Mallick R, Basak S, Duttaroy AK. Is copper beneficial for COVID-19 patients? Med Hypotheses. 2020; ‎‎142: 109814. [Crossref] [PubMed] ‎
  • ‎74. Hackler J, Heller RA, Sun Q, Schwarzer M, Diegmann J, Bachmann M, et al. Relation of Serum Copper Status ‎to Survival in COVID-19. Nutrients 2021; 13(6): 1898. [Crossref] [PubMed] ‎
  • ‎75. Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants Metabolites: Possibility of Natural Therapeutics Against ‎the COVID-19 Pandemic. Front Med (Lausanne) 2020; 7: 444. [Crossref] [PubMed] ‎
  • ‎76. Yurdakök Dikmen B, Pat Y, Dileköz E, Summak GY, Kul O, Filazi A. COVID-19 Farmakoterapisi. Veteriner ‎Farmakoloji ve Toksikoloji Derneği Bülteni 2020; 11(2): 80-114. [Crossref] ‎
  • ‎77. Masiello P, Novelli M, Beffy P, Menegazzi M. Can Hypericum perforatum (SJW) prevent cytokine storm in ‎COVID-19 patients? Phytother Res 2020; 34(7): 1471-3. [Crossref] [PubMed] ‎
  • ‎78. Çiftçi S, Samur FG. Use of botanical dietary supplements in infants and children and their effects on health. ‎Hacettepe University Faculty of Health Sciences Journal 2017; 4(2): 30-45. [Crossref] ‎
  • ‎79. Han B, Hoang BX. Opinions on the current pandemic of COVID-19: Use functional food to boost our immune ‎functions. J Infect Public Health 2020; 13(12): 1811-7. [Crossref] [PubMed] ‎
  • ‎80. Park S, Lee MS, Jung S, Lee S, Kwon O, Kreuter MH, et al. Echinacea purpurea Protects Against Restraint ‎Stress-Induced Immunosuppression in BALB/c Mice. J Med Food 2018; 21(3): 261-8. [Crossref] [PubMed] ‎
  • ‎81. Aucoin M, Cooley K, Saunders PR, Carè J, Anheyer D, Medina DN, et al. The effect of Echinacea spp. on the ‎prevention or treatment of COVID-19 and other respiratory tract infections in humans: A rapid review. Adv Integr ‎Med 2020; 7(4): 203-17. [Crossref] [PubMed] ‎
  • ‎82. Thota SM, Balan V, Sivaramakrishnan V. Natural products as home-based prophylactic and symptom ‎management agents in the setting of COVID-19. Phytother Res 2020; 34(12): 3148-67. [Crossref] [PubMed] ‎
  • ‎83. Khanna K, Kohli SK, Kaur R, Bhardwaj A, Bhardwaj V, Ohri P, et al. Herbal immune-boosters: Substantial ‎warriors of pandemic Covid-19 battle. Phytomedicine. 2021; 85: 153361. [Crossref] [PubMed] ‎
  • ‎84. Safa O, Hassaniazad M, Farashahinejad M, Davoodian P, Dadvand H, Hassanipour S, et al. Effects of Ginger on ‎clinical manifestations and paraclinical features of patients with Severe Acute Respiratory Syndrome due to ‎COVID-19: A structured summary of a study protocol for a randomized controlled trial. Trials 2020; 21(1): 841. ‎‎[Crossref] [PubMed] ‎
  • ‎85. Grunewald ME, Shaban MG, Mackin SR, Fehr AR, Perlman S. Murine Coronavirus Infection Activates the Aryl ‎Hydrocarbon Receptor in an Indoleamine 2,3-Dioxygenase-Independent Manner, Contributing to Cytokine ‎Modulation and Proviral TCDD-Inducible-PARP Expression. J Virol 2020; 94(3): e01743-19. [Crossref] [PubMed] ‎
  • ‎86. Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV. Immune-Boosting, Antioxidant and ‎Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front Immunol 2020; 11: 570122. ‎‎[Crossref] [PubMed] ‎
  • ‎87. Yang F, Zhang Y, Tariq A, Jiang X, Ahmed Z, Zhihao Z, et al. Food as medicine: A possible preventive ‎measure against coronavirus disease (COVID-19). Phytother Res 2020; 34(12): 3124-36. [Crossref] [PubMed] ‎
  • ‎88. Kubin CJ, McConville TH, Dietz D, Zucker J, May M, Nelson B, et al. Characterization of Bacterial and Fungal ‎Infections in Hospitalized Patients With Coronavirus Disease 2019 and Factors Associated With Health Care-‎Associated Infections. Open Forum Infect Dis 2021; 8(6): ofab201. [Crossref] [PubMed] ‎
  • ‎89. Vijay S, Bansal N, Rao BK, Veeraraghavan B, Rodrigues C, Wattal C, et al. Secondary Infections in ‎Hospitalized COVID-19 Patients: Indian Experience. Infect Drug Resist 2021; 14: 1893-903. [Crossref] [PubMed] ‎
  • ‎90. Abidullah M, Jadhav P, Sujan SS, Shrimanikandan AG, Reddy CR, Wasan RK. Potential Antibacterial Efficacy of ‎Garlic Extract on Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae: An In vitro Study. J Pharm ‎Bioallied Sci 2021; 13(Suppl 1): S590-S594. [Crossref] [PubMed] ‎
  • ‎91. Bhatwalkar SB, Mondal R, Krishna SBN, Adam JK, Govender P, Anupam R. Antibacterial Properties of ‎Organosulfur Compounds of Garlic (Allium sativum). Front Microbiol 2021; 12: 613077. [Crossref] [PubMed] ‎
  • ‎92. Şekeroğlu N, Gezici S. Koronavirüs Pandemisi ve Türkiye'nin Bazı Şifalı Bitkileri. Anatolian Clinic the Journal of ‎Medical Sciences 2020; 25(Supplement 1): 163-82. [Crossref] ‎
  • ‎93. Chen H, Du Q. Potential Natural Compounds for Preventing SARS-CoV-2 (2019-nCoV) Infection. Preprints ‎‎2020; 2020010358. [Crossref] ‎
  • ‎94. Islam R, Parves MR, Paul AS, Uddin N, Rahman MS, Mamun AA, et al. A molecular modeling approach to ‎identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J Biomol Struct Dyn 2021; ‎‎39(9): 3213-24. [Crossref] [PubMed] ‎
  • ‎95. Ferreira SS, Silva AM, Nunes FM. Sambucus nigra L. Fruits and Flowers: Chemical Composition and Related ‎Bioactivities. Food Reviews International 2020; 38: 1237-65. [Crossref] ‎
  • ‎96. Hawkins J, Baker C, Cherry L, Dunne E. Black elderberry (Sambucus nigra) supplementation effectively treats ‎upper respiratory symptoms: A meta-analysis of randomized, controlled clinical trials. Complement Ther Med ‎‎2019; 42: 361-5. [Crossref] [PubMed] ‎
  • ‎97. Annunziata G, Sanduzzi Zamparelli M, Santoro C, Ciampaglia R, Stornaiuolo M, Tenore GC, et al. May ‎Polyphenols Have a Role Against Coronavirus Infection? An Overview of in vitro Evidence. Front Med (Lausanne) ‎‎2020; 7: 240. [Crossref] [PubMed] ‎
  • ‎98. Islam MN, Hossain KS, Sarker PP, Ferdous J, Hannan MA, Rahman MM, et al. Revisiting pharmacological ‎potentials of Nigella sativa seed: A promising option for COVID-19 prevention and cure. Phytother Res 2021; ‎‎35(3): 1329-44. [Crossref] [PubMed] ‎
  • ‎99. Yonekura-Sakakibara K, Higashi Y, Nakabayashi R. The Origin and Evolution of Plant Flavonoid Metabolism. ‎Front Plant Sci 2019; 10: 943. [Crossref] [PubMed] ‎
  • ‎100. Serafim C, Araruna ME, Júnior EA, Diniz M, Hiruma-Lima C, Batista L. A Review of the Role of Flavonoids in ‎Peptic Ulcer (2010-2020). Molecules 2020; 25(22): 5431. [Crossref] [PubMed] ‎
  • ‎101. Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and Vitamin C: An Experimental, ‎Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front ‎Immunol 2020; 11: 1451. [Crossref] [PubMed] ‎
  • ‎102. Debiaggi M, Tateo F, Pagani L, Luini M, Romero E. Effects of propolis flavonoids on virus infectivity and ‎replication. Microbiologica 1990; 13(3): 207-13. [PubMed] ‎
  • ‎103. De Palma AM, Vliegen I, De Clercq E, Neyts J. Selective inhibitors of picornavirus replication. Med Res Rev ‎‎2008; 28(6): 823-84. [Crossref] [PubMed] ‎
  • ‎104. Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, et al. Small molecules blocking the entry of severe acute ‎respiratory syndrome coronavirus into host cells. J Virol 2004; 78(20): 11334-9. [Crossref] [PubMed] ‎
  • ‎105. Tan DX, Reiter RJ. An evolutionary view of melatonin synthesis and metabolism related to its biological ‎functions in plants. J Exp Bot 2020; 71(16): 4677-89. [Crossref] [PubMed] ‎
  • ‎106. Markus RP, Fernandes PA, Kinker GS, da Silveira Cruz-Machado S, Marçola M. Immune-pineal axis - acute ‎inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol 2018; ‎‎175(16): 3239-50. [Crossref] [PubMed] ‎
  • ‎107. Reiter RJ, Abreu-Gonzalez P, Marik PE, Dominguez-Rodriguez A. Therapeutic Algorithm for Use of Melatonin ‎in Patients With COVID-19. Front Med (Lausanne) 2020; 7: 226. [Crossref] [PubMed] ‎
  • ‎108. Alizadeh N, Dianatkhah M, Alimohamadi Y, Moradi H, Akbarpour S, Akrami M, et al. High dose melatonin as ‎an adjuvant therapy in intubated patients with COVID-19: A randomized clinical trial. J Taibah Univ Med Sci ‎‎2022; 17(3): 454-60. [Crossref] [PubMed] ‎
  • ‎109. Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res 2020; 285: ‎‎198018. [Crossref] [PubMed] ‎
  • ‎110. Cebeci İ, Şahiner F. Major and Possible Transmission Routes of SARS-CoV-2 Infections. J Mol Virol Immunol ‎‎2020; 1(2): 24-35. [Crossref] ‎
  • ‎111. Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal ‎samples. Lancet Gastroenterol Hepatol 2020; 5(5): 434-5. [Crossref] [PubMed] ‎
  • ‎112. Tamama K. Potential benefits of dietary seaweeds as protection against COVID-19 Nutr Rev 2021; 79(7): ‎‎814-23. [Crossref] [PubMed] ‎
  • ‎113. Xu K, Cai H, Shen Y, Ni Q, Chen Y, Hu S, et al. Management of COVID-19: the Zhejiang experience. ‎Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49(2): 147-57. [Crossref] [PubMed] ‎