Published March 22, 2023 | Version v1
Journal article Open

Enhanced mechanical and water resistance properties of cassava starch-PVA composites with TiO2 nanofillers for triboelectric nanogenerators films

  • 1. Brawijaya University; Universitas Negeri Surabaya
  • 2. Brawijaya University

Description

The utilization of biopolymers for energy applications continues to attract researchers, due to the unique properties of biopolymers that are easily modified, such as cassava starch (CS) biopolymer that has hydroxyl molecular chains. However, the brittle, and non-waterproof nature of starch films is an obstacle to their use in triboelectric nanogenerator (TENG) solid-solid films. This study aims to improve the physicochemical properties of cassava starch films by modifying them into nanocomposite films. The nanocomposite film was made from 70:30 CS/polyvinyl alcohol (PVA) composite and variation of TiO2 nanoparticles addition using solvent casting method. The results showed that the mechanical properties of cassava starch film increased with the addition of PVA. Meanwhile, the addition of TiO2 above 1 wt % of the mechanical properties of the film tends to decrease. The film has low wettability properties with a contact angle of 83.6°. The performance of the nanocomposite film as a Rotary disc freestanding film (RDF-TENG) produces 4.4-fold the output voltage and 2.8-fold the current compared to the film without TiO2. This is a new finding that the CS/PVA-TiO2 nanocomposite film has the potential for TENG films in high-humidity environmental conditions

Files

Enhanced mechanical and water resistance properties of cassava starch-PVA composites with TiO2 nanofillers for triboelectric nanogenerators films_zenodo.pdf

Additional details

References

  • Dzhardimalieva, G. I., Yadav, B. C., Lifintseva, T. V., Uflyand, I. E. (2021). Polymer chemistry underpinning materials for triboelectric nanogenerators (TENGs): Recent trends. European Polymer Journal, 142, 110163. doi: https://doi.org/10.1016/j.eurpolymj.2020.110163
  • Wang, J., Wu, C., Dai, Y., Zhao, Z., Wang, A., Zhang, T., Wang, Z. L. (2017). Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nature Communications, 8 (1). doi: https://doi.org/10.1038/s41467-017-00131-4
  • Xia, K., Fu, J., Xu, Z. (2020). Multiple‐Frequency High‐Output Triboelectric Nanogenerator Based on a Water Balloon for All‐Weather Water Wave Energy Harvesting. Advanced Energy Materials, 10 (28), 2000426. doi: https://doi.org/10.1002/aenm.202000426
  • Song, G., Kim, Y., Yu, S., Kim, M.-O., Park, S.-H., Cho, S. M. et al. (2015). Molecularly Engineered Surface Triboelectric Nanogenerator by Self-Assembled Monolayers (METS). Chemistry of Materials, 27 (13), 4749–4755. doi: https://doi.org/10.1021/acs.chemmater.5b01507
  • Mallakpour, S., Jarang, N. (2015). Mechanical, thermal and optical properties of nanocomposite films prepared by solution mixing of poly (vinyl alcohol) with titania nanoparticles modified with citric acid and vitamin C. Journal of Plastic Film & Sheeting, 32 (3), 293–316. doi: https://doi.org/10.1177/8756087915597024
  • Khushboo, Azad, P. (2018). Design and Implementation of Conductor-to-Dielectric Lateral Sliding TENG Mode for Low Power Electronics. Applications of Artificial Intelligence Techniques in Engineering, 167–174. doi: https://doi.org/10.1007/978-981-13-1819-1_17
  • Park, H.-W., Huynh, N. D., Kim, W., Lee, C., Nam, Y., Lee, S., Chung, K.-B., Choi, D. (2018). Electron blocking layer-based interfacial design for highly-enhanced triboelectric nanogenerators. Nano Energy, 50, 9–15. doi: https://doi.org/10.1016/j.nanoen.2018.05.024
  • Trihutomo, P., Marji, M., Harly, M., Wahyudi, B. A., Radja, M. B. (2022). The effect of Clathrin protein addition on increasing the number of electrons in organic Dye-Sensitized Solar Cell (DSSC). EUREKA: Physics and Engineering, 2, 15–27. doi: https://doi.org/10.21303/2461-4262.2022.001957
  • Kum-onsa, P., Chanlek, N., Manyam, J., Thongbai, P., Harnchana, V., Phromviyo, N., Chindaprasirt, P. (2021). Gold-Nanoparticle-Deposited TiO2 Nanorod/Poly(Vinylidene Fluoride) Composites with Enhanced Dielectric Performance. Polymers, 13 (13), 2064. doi: https://doi.org/10.3390/polym13132064
  • Huynh, N. D., Park, H., Chung, K., Choi, D. (2018). Effect on TENG Performance by Phase Control of TiOx Nanoparticles. Composites Research, 31 (6), 365–370. doi: https://doi.org/10.7234/composres.2018.31.6.365
  • Bunriw, W., Harnchana, V., Chanthad, C., Huynh, V. N. (2021). Natural Rubber-TiO2 Nanocomposite Film for Triboelectric Nanogenerator Application. Polymers, 13 (13), 2213. doi: https://doi.org/10.3390/polym13132213
  • Wang, Y., Zhang, L., Lu, A. (2020). Highly stretchable, transparent cellulose/PVA composite hydrogel for multiple sensing and triboelectric nanogenerators. Journal of Materials Chemistry A, 8 (28), 13935–13941. doi: https://doi.org/10.1039/d0ta02010a
  • Shi, K., Huang, X., Sun, B., Wu, Z., He, J., Jiang, P. (2019). Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy, 57, 450–458. doi: https://doi.org/10.1016/j.nanoen.2018.12.076
  • Chen, X., Yusuf, A., del Rio, J. S., Wang, D.-Y. (2021). A facile and robust route to polyvinyl alcohol-based triboelectric nanogenerator containing flame-retardant polyelectrolyte with improved output performance and fire safety. Nano Energy, 81, 105656. doi: https://doi.org/10.1016/j.nanoen.2020.105656
  • Singh, R., Rhee, H.-W. (2019). The rise of bio-inspired energy devices. Energy Storage Materials, 23, 390–408. doi: https://doi.org/10.1016/j.ensm.2019.04.030
  • Zhu, Z., Xia, K., Xu, Z., Lou, H., Zhang, H. (2018). Starch Paper-Based Triboelectric Nanogenerator for Human Perspiration Sensing. Nanoscale Research Letters, 13 (1). doi: https://doi.org/10.1186/s11671-018-2786-9
  • Chi, Y., Xia, K., Zhu, Z., Fu, J., Zhang, H., Du, C., Xu, Z. (2019). Rice paper-based biodegradable triboelectric nanogenerator. Microelectronic Engineering, 216, 111059. doi: https://doi.org/10.1016/j.mee.2019.111059
  • Gots, V., Palchyk, P., Berdnyk, O. (2018). Investigation of properties of modified basalt fibers. EUREKA: Physics and Engineering, 4, 43–48. doi: https://doi.org/10.21303/2461-4262.2018.00673
  • Ccorahua, R., Huaroto, J., Luyo, C., Quintana, M., Vela, E. A. (2019). Enhanced-performance bio-triboelectric nanogenerator based on starch polymer electrolyte obtained by a cleanroom-free processing method. Nano Energy, 59, 610–618. doi: https://doi.org/10.1016/j.nanoen.2019.03.018
  • Shi, L., Dong, S., Xu, H., Huang, S., Ye, Q., Liu, S. et al. (2019). Enhanced performance triboelectric nanogenerators based on solid polymer electrolytes with different concentrations of cations. Nano Energy, 64, 103960. doi: https://doi.org/10.1016/j.nanoen.2019.103960
  • Shen, J., Li, Z., Yu, J., Ding, B. (2017). Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy, 40, 282–288. doi: https://doi.org/10.1016/j.nanoen.2017.08.035
  • Ccorahua, R., Cordero, A., Luyo, C., Quintana, M., Vela, E. (2019). Starch-Cellulose-Based Triboelectric Nanogenerator Obtained by a Low-Cost Cleanroom-Free Processing Method. MRS Advances, 4 (23), 1315–1320. doi: https://doi.org/10.1557/adv.2018.652
  • Torres, F. G., Troncoso, O. P., Torres, C., Díaz, D. A., Amaya, E. (2011). Biodegradability and mechanical properties of starch films from Andean crops. International Journal of Biological Macromolecules, 48 (4), 603–606. doi: https://doi.org/10.1016/j.ijbiomac.2011.01.026
  • Kim, J.-Y., Choi, Y.-G., Byul Kim, S. R., Lim, S.-T. (2014). Humidity stability of tapioca starch–pullulan composite films. Food Hydrocolloids, 41, 140–145. doi: https://doi.org/10.1016/j.foodhyd.2014.04.008
  • Ben Doudou, B., Vivet, A., Chen, J., Laachachi, A., Falher, T., Poilâne, C. (2014). Hybrid carbon nanotube–silica/ polyvinyl alcohol nanocomposites films: preparation and characterisation. Journal of Polymer Research, 21 (4). doi: https://doi.org/10.1007/s10965-014-0420-9
  • Fei, P., Shi, Y., Zhou, M., Cai, J., Tang, S., Xiong, H. (2013). Effects of nano-TiO2on the properties and structures of starch/poly(ε-caprolactone) composites. Journal of Applied Polymer Science. doi: https://doi.org/10.1002/app.39695
  • Alvarez-Ramirez, J., Vazquez-Arenas, J., García-Hernández, A., Vernon-Carter, E. J. (2019). Improving the mechanical performance of green starch/glycerol/Li+ conductive films through cross-linking with Ca2+. Solid State Ionics, 332, 1–9. doi: https://doi.org/10.1016/j.ssi.2019.01.002
  • Zamanian, M., Sadrnia, H., Khojastehpour, M., Hosseini, F., Thibault, J. (2021). Effect of TiO2 nanoparticles on barrier and mechanical properties of PVA films. Journal of Membrane Science and Research, 7 (2), 67–73. doi: https://doi.org/10.22079/JMSR.2020.112911.1283
  • Kochkina, N. E., Butikova, O. A. (2019). Effect of fibrous TiO2 filler on the structural, mechanical, barrier and optical characteristics of biodegradable maize starch/PVA composite films. International Journal of Biological Macromolecules, 139, 431–439. doi: https://doi.org/10.1016/j.ijbiomac.2019.07.213
  • Oleyaei, S. A., Almasi, H., Ghanbarzadeh, B., Moayedi, A. A. (2016). Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties. Carbohydrate Polymers, 152, 253–262. doi: https://doi.org/10.1016/j.carbpol.2016.07.040
  • Abdullah, A. M., Aziz, S. B., Saeed, S. R. (2021). Structural and electrical properties of polyvinyl alcohol (PVA):Methyl cellulose (MC) based solid polymer blend electrolytes inserted with sodium iodide (NaI) salt. Arabian Journal of Chemistry, 14(11), 103388. doi: https://doi.org/10.1016/j.arabjc.2021.103388
  • Adamu, A. D., Jikan, S. S., Talip, B. H. A., Badarulzaman, N. A., Yahaya, S. (2017). Effect of Glycerol on the Properties of Tapioca Starch Film. Materials Science Forum, 888, 239–243. doi: https://doi.org/10.4028/www.scientific.net/msf.888.239
  • Abral, H., Hartono, A., Hafizulhaq, F., Handayani, D., Sugiarti, E., Pradipta, O. (2019). Characterization of PVA/cassava starch biocomposites fabricated with and without sonication using bacterial cellulose fiber loadings. Carbohydrate Polymers, 206, 593–601. doi: https://doi.org/10.1016/j.carbpol.2018.11.054
  • Surudžić, R., Janković, A., Bibić, N., Vukašinović-Sekulić, M., Perić-Grujić, A., Mišković-Stanković, V. et al. (2016). Physico–chemical and mechanical properties and antibacterial activity of silver/poly(vinyl alcohol)/graphene nanocomposites obtained by electrochemical method. Composites Part B: Engineering, 85, 102–112. doi: https://doi.org/10.1016/j.compositesb.2015.09.029
  • Tian, H., Yan, J., Rajulu, A. V., Xiang, A., Luo, X. (2017). Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity. International Journal of Biological Macromolecules, 96, 518–523. doi: https://doi.org/10.1016/j.ijbiomac.2016.12.067
  • Patil, S., Bharimalla, A. K., Mahapatra, A., Dhakane-Lad, J., Arputharaj, A., Kumar, M. et al. (2021). Effect of polymer blending on mechanical and barrier properties of starch-polyvinyl alcohol based biodegradable composite films. Food Bioscience, 44, 101352. doi: https://doi.org/10.1016/j.fbio.2021.101352
  • Garbuz, А., Bilym, P., Zubenko, D. (2016). Features of changes of structure and adhesive properties for acrylic adhesives under the influence of the filler. EUREKA: Physics and Engineering, 3, 13–16. doi: https://doi.org/10.21303/2461-4262.2016.00075
  • Khalaf, A. A., Abed, S. A., Alkhfaji, S. S., Al-Obaidi, M. A., Hanon, M. M. (2022). The effect of adding natural materials waste on the mechanical properties and water absorption of epoxy composite using grey relations analysis. EUREKA: Physics and Engineering, 1, 131–142. doi: https://doi.org/10.21303/2461-4262.2022.001952
  • Ji, M., Li, F., Li, J., Li, J., Zhang, C., Sun, K., Guo, Z. (2021). Enhanced mechanical properties, water resistance, thermal stability, and biodegradation of the starch-sisal fibre composites with various fillers. Materials & Design, 198, 109373. doi: https://doi.org/10.1016/j.matdes.2020.109373
  • Bergo, P., Sobral, P. J. A., Prison, J. M. (2010). Effect of glycerol on physical properties of cassava starch films. Journal of Food Processing and Preservation, 34, 401–410. doi: https://doi.org/10.1111/j.1745-4549.2008.00282.x
  • Wang, Y., Zhang, H., Zeng, Y., Hossen, M. A., Dai, J., Li, S. et al. (2022). Development and characterization of potato starch/lactucin/nano-TiO2 food packaging for sustained prevention of mealworms. Food Packaging and Shelf Life, 33, 100837. doi: https://doi.org/10.1016/j.fpsl.2022.100837
  • Sintusiri, J., Harnchana, V., Amornkitbamrung, V., Wongsa, A., Chindaprasirt, P. (2020). Portland Cement-TiO2 triboelectric nanogenerator for robust large-scale mechanical energy harvesting and instantaneous motion sensor applications. Nano Energy, 74, 104802. doi: https://doi.org/10.1016/j.nanoen.2020.104802
  • Park, H.-W., Huynh, N., Kim, W., Hwang, H., Hong, H., Choi, K. et al. (2018). Effects of Embedded TiO2−x Nanoparticles on Triboelectric Nanogenerator Performance. Micromachines, 9 (8), 407. doi: https://doi.org/10.3390/mi9080407
  • Rong, L., Shen, M., Wen, H., Ren, Y., Xiao, W., Xie, J. (2021). Preparation and characterization of hyacinth bean starch film incorporated with TiO2 nanoparticles and Mesona chinensis Benth polysaccharide. International Journal of Biological Macromolecules, 190, 151–158. doi: https://doi.org/10.1016/j.ijbiomac.2021.08.180
  • Wang, N., Feng, Y., Zheng, Y., Zhang, L., Feng, M., Li, X. et al. (2021). New Hydrogen Bonding Enhanced Polyvinyl Alcohol Based Self‐Charged Medical Mask with Superior Charge Retention and Moisture Resistance Performances. Advanced Functional Materials, 31(14), 2009172. doi: https://doi.org/10.1002/adfm.202009172
  • Wang, N., Zheng, Y., Feng, Y., Zhou, F., Wang, D. (2020). Biofilm material based triboelectric nanogenerator with high output performance in 95 % humidity environment. Nano Energy, 77, 105088. doi: https://doi.org/10.1016/j.nanoen.2020.105088