Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published March 3, 2023 | Version v1
Journal article Open

Brouwer fixed point theorem in strictly star-shaped sets

  • 1. Nicolaus Copernicus University
  • 2. Sidi-Bel-Abbes University

Description

In this note, we show that the Brouwer fixed point theorem in open strictly star-shaped sets is equivalent to a number of results closely related to the Euclidean spaces.

Files

LNAA_paper_08_Gornewicz_Quahab.pdf

Files (319.7 kB)

Name Size Download all
md5:5bea625008f36c9bb3ed160b5324a50f
319.7 kB Preview Download

Additional details

References

  • A. Boulkhemair and A. Chakib, On a shape derivative formula with respect to convex domains. J. Convex Anal. 21, No. 1, (2014), 67-87
  • P. Bohl, Ueber die Bewegung eines mechanischen Systems in der Nähe einer Gleichgewichtslage. J. Reine Angew. Math. 127, (1904), 179-276.
  • L. E.J. Brouwer, Über Abbildung von Mannigfaltigkeiten. (German) Math. Ann. 71 (1911), no. 1, 97?115.
  • G. Dinca and J. Mawhin, Brouwer Degree. The Core of Nonlinear Analysis. Progress in Nonlinear Di?erential Equations and Their Applications 95. Cham: Birkhäuser 2021.
  • C. González, A. Jiménez-Melado, and E. Llorens-Fuster, A Mönch type ?xed point theorem under the interior condition, J. Math. Anal. Appl. 352 (2009), 816?821.
  • L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Springer, New York, 2006.
  • J. Hadamard, Note sur quelques applications de l'indice de Kronecker. In Jules Tannery: Introduction à la théorie des fonctions d'une variable (Volume 2), 2nd edition, A. Hermann & Fils, (1910), 437-477.
  • A. Hatcher, Algebraic Topology. Cambridge University Press, Cambridge 2002
  • S. Kakutani, A generalization of Brouwer's ?xed point theorem. Duke Math. J. 8, (1941), 457-459
  • B. Knaster, K. Kuratowski and S. und Mazurkiewicz, Ein Beweis des Fixpunktsatzes füur n-Dimensionale Simplexe. Fund. Math. 14, (1929), 132-137.
  • R.B. Kellogg, T.Y. Li and J. Yorke, A constructive proof of the Brouwer ?xed-point theorem and computational results. SIAM J. Numer. Anal. 13, (1976), 473-483.
  • J. Milnor, Analytic proofs of the ?Hairy Ball Theorem? and the Brouwer. Fixed Point Theorem Am. Math. Monthly 85, (1978), 525-527.
  • S. Park, Ninety years of the Brouwer ?xed point theorem, Vietnam J. Math. 27 (1999), 187?222
  • H. Poincaré, Sur certaines solutions particulidres du problbme des trois corps, BuIl. Astronomique 1 (1884) 65-14, in Oeuvres de H. Poincaré, t. VII, Gautier-Villars, Paris, (1928), 253-261.
  • J. F. Nash, Equilibrium points in n-person games, Pro.the United States of America 36 (1950), 48-49.
  • J. F. Nash, Noncooperative games, Annals of Mathematics, 54, (1951), 289-295.
  • A. Jiménez-Melado and C. H. Morales, Fixed point theorems under the interior condition, Proc. Amer. Math. Soc. 134 (2006), 501?507.
  • E. Zeidler, Nonlinear Functional Analysis and Its Applications I. Springer, New York 1986.