Sr-doped bioactive glasses for biological applications
Creators
- 1. Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
- 2. Department of Biology, Shahid Chamran University, Ahvaz, Iran
- 3. Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
- 4. Department of Chemistry, Science and Research Branch, IAU, Tehran, Iran
- 5. Department of dentistry, Isfahan (khorasgan) Branch , Islamic Azad University, Isfahan, Iran
Contributors
- 1. School of Science and Technology, The University of Georgia, Tbilisi, Georgia
- 2. Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
Description
In this work, sol–gel derived bioactive glasses (BGs) system of 60% SiO2-(36-x) CaO-4P2O5-x SrO (where x = 2, 4, 6 and 8 mol%) were obtained. The bioactivity and proliferation of G292 cells was investigated for Sr-containing BGs. X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were utilized to study the obtained phases, hydroxyapatite (HA) morphology, and its functional groups, respectively. The XRD and FTIR tests showed that the rate of hydroxyapatite formation on sample 2S was higher than that of other samples. Also 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay performed after one day revealed that the sample containing 6 mol% of Sr (6S) showed higher viability. However, the sample with 8 mol% Sr (8S) showed a decrease in bioactivity in osteoblast G292 cells proliferation. According to the results, 6S BG specimen with 6 mol% SrO exhibited appropriate bioactivity and cell proliferation. This finding showed that the obtained BGs could be potentially used for drug delivery systems as well as dental and orthopedic applications.
Files
srdoped.pdf
Files
(1.3 MB)
Name | Size | Download all |
---|---|---|
md5:b37593462eae8158a0f0bc01f0bf20b9
|
1.3 MB | Preview Download |
Additional details
Identifiers
References
- L.L. Hench, The story of Bioglass®, Journal of Materials Science: Materials in Medicine 17(11) (2006) 967-978.
- J.R. Jones, New trends in bioactive scaffolds: The importance of nanostructure, Journal of the European Ceramic Society 29(7) (2009) 1275-1281.
- E. Rezabeigi, P.M. Wood-Adams, R.A. Drew, Synthesis of 45S5 Bioglass® via a straightforward organic, nitrate-free sol–gel process, Materials Science and Engineering: C 40 (2014) 248-252.
- L.L. Hench, The theory of bioactive bonding, Mat. Clin. Appl (1995) 331-342.
- Q. Nawaz, M.A. Ur Rehman, J.A. Roether, L. Yufei, A. Grünewald, R. Detsch, A.R. Boccaccini, Bioactive glass based scaffolds incorporating gelatin/manganese doped mesoporous bioactive glass nanoparticle coating, Ceramics International 45(12) (2019) 14608-14613.
- F. Baino, E. Fiume, M. Miola, F. Leone, B. Onida, E. Verné, Fe-doped bioactive glass-derived scaffolds produced by sol-gel foaming, Materials Letters 235 (2019) 207-211.
- N. Pajares-Chamorro, J. Shook, N.D. Hammer, X. Chatzistavrou, Resurrec-tion of antibiotics that methicillin-resistant Staphylococcus aureus resists by sil-ver-doped bioactive glass-ceramic microparticles, Acta Biomaterialia 96 (2019) 537-546.
- L. Hench, J. Wilson, Bioactive materials, MRS Online Proceedings Library Archive 55 (1985).
- L.L. Hench, J.R. Jones, Bioactive glasses: frontiers and challenges, Frontiers in bioengineering and biotechnology 3 (2015) 194.
- F. Sharifianjazi, N. Parvin, M. Tahriri, Synthesis and characteristics of sol-gel bioactive SiO2-P2O5-CaO-Ag2O glasses, Journal of Non-Crystalline Solids 476 (2017) 108-113.
- F. Sharifianjazi, N. Parvin, M. Tahriri, Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses, Ceramics Interna-tional 43(17) (2017) 15214-15220.
- L.L. Hench, J.K. West, The sol-gel process, Chemical reviews 90(1) (1990) 33-72.
- R. Orifice, L. Hench, A. Clark, A. Brennan, Novel sol-gel bioactive fibres, J Biomed Mater Res 55 (2001) 460-467.Fig. 6. SEM micrographs of S6 BG sample after soaking in the SBF solution for (a) 3, (b) 7, (c) 14 and (d) 21 days.
- A. Salinas, A. Martin, M. Vallet?Regí, Bioactivity of three CaO–P2O5–SiO2sol?gel glasses, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 61(4) (2002) 524-532.
- P. Saravanapavan, J.R. Jones, R.S. Pryce, L.L. Hench, Bioactivity of gel–glass powders in the CaO?SiO2 system: A comparison with ternary (CaO?P2P5?SiO2) and quaternary glasses (SiO2?CaO?P2O5?Na2O), Journal of Biomedical Materials Re-search Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Ko-rean Society for Biomaterials 66(1) (2003) 110-119.
- A. Moghanian, A. Ghorbanoghli, M. Kazem-Rostami, A. Pazhouheshgar, E. Salari, M. Saghafi Yazdi, T. Alimardani, H. Jahani, F. Sharifian Jazi, M. Tahriri, Novel antibacterial Cu/Mg-substituted 58S-bioglass: Synthesis, characterization and investigation of in vitro bioactivity, International Journal of Applied Glass Science n/a(n/a) (2019).
- M.S.N. Shahrbabak, F. Sharifianjazi, D. Rahban, A. Salimi, A Comparative Investigation on Bioactivity and Antibacterial Properties of Sol-Gel Derived 58S Bioactive Glass Substituted by Ag and Zn, Silicon 11(6) (2019) 2741-2751.
- P.V. Phan, M. Grzanna, J. Chu, A. Polotsky, A. El?Ghannam, D. Van Heerden, D.S. Hungerford, C.G. Frondoza, The effect of silica?containing calcium?phos-phate particles on human osteoblasts in vitro, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japa-nese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 67(3) (2003) 1001-1008.
- L.L. Hench, An introduction to bioceramics, World scientific1993.
- T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface?structure changes in bioactive glass?ceramic A?W3, Journal of biomedical materials research 24(6) (1990) 721-734.
- A.M. Pietak, J.W. Reid, M.J. Stott, M. Sayer, Silicon substitution in the calci-um phosphate bioceramics, Biomaterials 28(28) (2007) 4023-4032.
- M. Barekat, R.S. Razavi, F. Sharifianjazi, Synthesis and the surface resistivity of carbon black pigment on black silicone thermal control coating, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 45(4) (2015) 502-506.
- E. Ghasali, A. Bordbar-Khiabani, M. Alizadeh, M. Mozafari, M. Niazmand, H. Kazemzadeh, T. Ebadzadeh, Corrosion behavior and in-vitro bioactivity of po-rous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process, Materials Chemistry and Physics 225 (2019) 331-339.
- S. Rahimi, F. SharifianJazi, A. Esmaeilkhanian, M. Moradi, A.H. Safi Samgh-abadi, Effect of SiO2 content on Y-TZP/Al2O3 ceramic-nanocomposite proper-ties as potential dental applications, Ceramics International 46(8, Part A) (2020) 10910-10916.
- A. Esmaeilkhanian, F. Sharifianjazi, A. Abouchenari, A. Rouhani, N. Parvin, M. Irani, Synthesis and Characterization of Natural Nano-hydroxyapatite Derived from Turkey Femur-Bone Waste, Applied Biochemistry and Biotechnology 189(3) (2019) 919-932.
- A. Balamurugan, G. Balossier, J. Michel, S. Kannan, H. Benhayoune, A. Re-belo, J. Ferreira, Sol gel derived SiO2?CaO?MgO?P2O5 bioglass system—Prepara-tion and in vitro characterization, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 83(2) (2007) 546-553.
- Z. Goudarzi, N. Parvin, F. Sharifianjazi, Formation of hydroxyapatite on sur-face of SiO2–P2O5–CaO–SrO–ZnO bioactive glass synthesized through sol-gel route, Ceramics International 45(15) (2019) 19323-19330.
- S. Hesaraki, M. Gholami, S. Vazehrad, S. Shahrabi, The effect of Sr con-centration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system, Materials Science and Engineering: C 30(3) (2010) 383-390.
- A. Oki, B. Parveen, S. Hossain, S. Adeniji, H. Donahue, Preparation and in vitro bioactivity of zinc containing sol?gel–derived bioglass materials, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Bio-materials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 69(2) (2004) 216-221.
- F. Sharifianjazi, M. Moradi, A. Abouchenari, A.H. Pakseresht, A. Esmaeilkha-nian, M. Shokouhimehr, M.S. Asl, Effects of Sr and Mg dopants on biological and mechanical properties of SiO2–CaO–P2O5 bioactive glass, Ceramics International (2020).
- A.H. Taghvaei, F. Danaeifar, C. Gammer, J. Eckert, S. Khosravimelal, M. Gholipourmalekabadi, Synthesis and characterization of novel mesoporous stron-tium-modified bioactive glass nanospheres for bone tissue engineering applica-tions, Microporous and Mesoporous Materials 294 (2020) 109889.
- F. Sharifianjazi, A.H. Pakseresht, M. Shahedi Asl, A. Esmaeilkhanian, H. Nar-gesi khoramabadi, H.W. Jang, M. Shokouhimehr, Hydroxyapatite Consolidated by Zirconia: Applications for Dental Implant, Composites and Compounds 2(1) (2020).
- T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bio-activity?, Biomaterials 27(15) (2006) 2907-2915.
- A. Moghanian, S. Firoozi, M. Tahriri, Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass, Ceramics International 43(17) (2017) 14880-14890.