Published December 29, 2022
| Version v1
Journal article
Open
Ultraconserved elements-based phylogenomic systematics of the snake superfamily Elapoidea, with the description of a new Afro-Asian family
Description
Das, Sunandan, Greenbaum, Eli, Meiri, Shai, Bauer, Aaron M., Burbrink, Frank T., Raxworthy, Christopher J., Weinell, Jeffrey L., Brown, Rafe M., Brecko, Jonathan, Pauwels, Olivier S.G., Rabibisoa, Nirhy, Raselimanana, Achille P., Merila, Juha (2023): Ultraconserved elements-based phylogenomic systematics of the snake superfamily Elapoidea, with the description of a new Afro-Asian family. Molecular Phylogenetics and Evolution 180: 1-11, DOI: 10.1016/j.ympev.2022.107700
Files
source.pdf
Files
(3.1 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:c362b39a7e7b29e9afa2258fafef58c7
|
3.1 MB | Preview Download |
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:C362FF9A7E7BFFE9FFA2FF8FFFEFFFC7
- URL
- http://publication.plazi.org/id/C362FF9A7E7BFFE9FFA2FF8FFFEFFFC7
References
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V. M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comp. Biol. 19, 455-477.
- Bar, A., Haimovitch, G., Meiri, S., 2021. Field guide to the amphibians and reptiles of, Israel. Edition. Chimaira, Frankfurt Am Main.
- Bogert, C.M., 1940. Herpetological Results of the Vernay Angola Expedition. Bull. Am. Mus. Nat. Hist. 77, 1-107.
- Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
- Bossert, S., Murray, E.A., Pauly, A., Chernyshov, K., Brady, S.G., Danforth, B.N., 2021. Gene tree estimation errors with ultraconserved elements: An empirical study on Pseudapis bees. Syst. Biol. 70, 803-821.
- B¨ottger, O., 1880. Die Reptilien und Amphibien von Syrien, Palaestina und Cypren. Ber. Senckenberg. Naturforsch. Ges. Frankfurt M. 1879-1880, 132-219.
- Boulenger, G.A., 1896. Catalogue of the Snakes in the British Museum (Natural History). Volume III, containing the Colubridae (Opisthoglyphae and Proteroglyphae), Amblycephalidae, and Viperidae. Trustees of the British Museum, London.
- Boulenger, G.A., 1893. Catalogue of the Snakes in the British Museum (Natural History). Volume I, containing the families Typhlopidae, Glauconiidae, Boidae, Ilysiidae, Uropeltidae, Xenopeltidae, and Colubridae aglyphae, part. Trustees of the British Museum, London.
- Boulenger, G.A., 1894. Catalogue of the Snakes in the British Museum (Natural History). Volume II, containing the conclusion of the Colubridae aglyphae. Trustees of the British Museum, London.
- Bourgeois, M., 1968. Contribution `a la morphologie compar´ee du crane des ophidiens de l' Afrique Centrale, 18. Publications de l' Universite´Officielle du Congo a ` Lubumbashi, pp. 5-293.
- Briggs, D.E., 2015. The Cambrian explosion. Curr. Biol. 25, R864-R868.
- Broadley, D.G., Tolley, K.A., Conradie, W., Wishart, S., Trape, J.-F., Burger, M., Kusamba, C., Zassi-Boulou, A.-G., Greenbaum, E., 2018. A phylogeny and genuslevel revision of the African file snakes Gonionotophis Boulenger (Squamata: Lamprophiidae). Afr. J. Herpetol. 67, 43-60.
- Burbrink, F.T., Ruane, S., Kuhn, A., Rabibisoa, N., Randriamahatantsoa, B., Raselimanana, A.P., Andrianarimalala, M.S., Cadle, J.E., Lemmon, A.R., Lemmon, E. M., Nussbaum, R.A., 2019. The origins and diversification of the exceptionally rich gemsnakes (Colubroidea: Lamprophiidae: Pseudoxyrhophiinae) in Madagascar. Syst. Biol. 68, 918-936.
- Cadle, J.E., 1994. The colubrid radiation in Africa (Serpentes: Colubridae): Phylogenetic relationships and evolutionary patterns based on immunological data. Zool. J. Linn. Soc. 110, 103-140.
- Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G., 2008. Meshlab: an open-source mesh processing tool. Eurographics Italian chapter conference 2008, 129-136.
- Cundall, D., Irish, F., 2008. The snake skull. In: Gans, C., Gaunt, A.S., Adler, K. (Eds.), Biology of the Reptilia, Volume twenty. Society for the Study of Amphibians and Reptiles, Ithaca, pp. 349-692.
- Das, S., Brecko, J., Pauwels, O.S.G., Meril¨a, J., 2022. Cranial osteology of Hypoptophis (Aparallactinae: Atractaspididae: Caenophidia), with a discussion on the evolution of its fossorial adaptations. J. Morphol. 2022, 1-29.
- Das, S., Pramanick, K., 2019. Comparative anatomy and homology of jaw adductor muscles of some South Asian colubroid snakes (Serpentes: Colubroidea). Vert. Zool. 69, 93-102.
- de Witte, G.-F., Laurent, R., 1947. R´evision d' un groupe de Colubridae africains: genres Calamelaps, Miodon, Aparallactus et formes affines. M´em. Mus. R. His. Nat. Belg. 29, 1-134.
- Degnan, J.H., Rosenberg, N.A., 2006. Discordance of species trees with their most likely gene trees. PLoS Genet. 2, e68.
- Edwards, S.V., Xi, Z., Janke, A., Faircloth, B.C., McCormack, J.E., Glenn, T.C., Zhong, B., Wu, S., Lemmon, E.M., Lemmon, A.R., Leach´e, A.D., 2016. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol. Phylogenet. Evol. 94, 447-462.
- Faircloth, B.C., 2016. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786-788.
- Faircloth, B.C., 2013. illumiprocessor: a trimmomatic wrapper for parallel adapter and quality trimming. Doi: 10.6079/J9ILL.
- Figueroa, A., McKelvy, A.D., Grismer, L.L., Bell, C.D., Lailvaux, S.P., 2016. A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. PLoS One 119, e0161070.
- FitzSimons, F.W., 1912. The Snakes of South Africa: Their Venom and the Treatment of Snake Bite. T. Maskew Miller, Cape Town and Longmans, Green, and Co., London.
- Geniez, P., 2018. Snakes of Europe, North Africa and the Middle East: A Photographic Guide. Princeton University Press, Princeton and Oxford.
- Gravlund, P., 2001. Radiation within the advanced snakes (Caenophidia) with special emphasis on African opistoglyph colubrids, based on mitochondrial sequence data. Biol. J. Linn. Soc. 72, 99-114.
- Grundler, M.C., Rabosky, D.L., 2021. Rapid increase in snake dietary diversity and complexity following the end-Cretaceous mass extinction. PLoS Biol. 19, e3001414.
- Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol 59, 307-321.
- Gunther, A., 1858. Catalogue of Colubrine Snakes in the Collection of the British Museum. Trustees of the British Museum, London.
- Head, J.J., Mahlow, K., Mueller, J., 2016. Fossil calibration dates for molecular phylogenetic analysis of snakes 2: Caenophidia, Colubroidea, Elapoidea. Colubridae. Palaeontol. Electron. 19, 1-21.
- Heath, T.A., Hedtke, S.M., Hillis, D.M., 2008. Taxon sampling and the accuracy of phylogenetic analyses. J. Syst. Evol. 46, 239-257.
- Heinicke, M.P., Titus-McQuillan, J.E., Daza, J.D., Kull, E.M., Stanley, E.L., Bauer, A.M., 2020. Phylogeny and evolution of unique skull morphologies in dietary specialist African shovel-snouted snakes (Lamprophiidae: Prosymna). Biol. J. Linn. Soc. 131, 136-153.
- Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., Vinh, L.S., 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522.
- Hofmeyr, M.D., Vamberger, M., Branch, W., Schleicher, A., Daniels, S.R., 2017. Tortoise (Reptilia, Testudinidae) radiations in Southern Africa from the Eocene to the present. Zool. Scr. 46, 389-400.
- ICZN (International Commission on Zoological Nomenclature), 1999. International Code of Zoological Nomenclature, fourth edition. International Trust for Zoological Nomenclature, London.
- Junier, T., Zdobnov, E.M., 2010. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26, 1669-1670.
- Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., von Haeseler, A., Jermiin, L.S., 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589.
- Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.
- Kelly, C.M., Barker, N.P., Villet, M.H., Broadley, D.G., Branch, W.R., 2008. The snake family Psammophiidae (Reptilia: Serpentes): phylogenetics and species delimitation in the African sand snakes (Psammophis Boie, 1825) and allied genera. Mol. Phylogenet. Evol. 47, 1045-1060.
- Kelly, C.M., Barker, N.P., Villet, M.H., Broadley, D.G., 2009. Phylogeny, biogeography and classification of the snake superfamily Elapoidea: a rapid radiation in the late Eocene. Cladistics 25, 38-63.
- Kelly, C.M., Branch, W.R., Broadley, D.G., Barker, N.P., Villet, M.H., 2011. Molecular systematics of the African snake family Lamprophiidae Fitzinger, 1843 (Serpentes: Elapoidea), with particular focus on the genera Lamprophis Fitzinger 1843 and Mehelya Csiki 1903. Mol. Phylogenet. Evol. 58, 415-426.
- Klein, C.G., Pisani, D., Field, D.J., Lakin, R., Wills, M.A., Longrich, N.R., 2021. Evolution and dispersal of snakes across the Cretaceous-Paleogene mass extinction. Nat. Comm. 12, 5335.
- Kraus, F., Brown, W.M., 1998. Phylogenetic relationships of colubroid snakes based on mitochondrial DNA sequences. Zool. J. Linn. Soc. 122, 455-487.
- Lanza, B., 1966. Il genere Brachyophis e descrizione di una nuova forma (Reptilia, Serpentes, Colubridae). Monit. Zool. Ital. 74, 30-48.
- Lawson, R., Slowinski, J.B., Crother, B.I., Burbrink, F.T., 2005. Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Mol. Phylogenet. Evol. 37, 581-601.
- Lee, M.S., Soubrier, J., Edgecombe, G.D., 2013. Rates of phenotypic and genomic evolution during the Cambrian explosion. Curr. Biol. 23, 1889-1895.
- Letunic, I., Bork, P., 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. W1, W293-W296.
- L´eveill´e-Bourret, E ´., Starr, J.R., Ford, B.A., Lemmon, E.M., Lemmon, A.R., 2018. Resolving Rapid Radiations within Angiosperm Families Using Anchored Phylogenomics. Syst. Biol. 67, 94-112.
- Linkem, C.W., Minin, V.N., Leach´e, A.D., 2016. Detecting the anomaly zone in species trees and evidence for a misleading signal in higher-level skink phylogeny (Squamata: Scincidae). Syst. Biol. 65, 465-477.
- Longo, S.J., Faircloth, B.C., Meyer, A., Westneat, M.W., Alfaro, M.E., Wainwright, P.C., 2017. Phylogenomic analysis of a rapid radiation of misfit fishes (Syngnathiformes) using ultraconserved elements. Mol. Phylogenet. Evol. 113, 33-48.
- McCarthy, C.J., 1985. Monophyly of elapid snakes (Serpentes: Elapidae). An assessment of the evidence. Zool. J. Linn. Soc. 83, 79-93.
- McCormack, J.E., Faircloth, B.C., Crawford, N.G., Gowaty, P.A., Brumfield, R.T., Glenn, T.C., 2012. Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res. 22, 746-754.
- McDowell, S.B., 1967. Aspidomorphus, a genus of New Guinea snakes of the family Elapidae, with notes on related genera. J. Zool. Lond. 151, 497-543.
- McDowell, S.B., 1969. Toxicocalamus, a New Guinea genus of snakes of the family Elapidae. J. Zool. Lond. 159, 443-511.
- McDowell, S.B., 1970. On the status and relationships of the Solomon Island elapid snakes. J. Zool. Lond. 161, 145-190.
- McDowell, S.B., 1987. Systematics. In: Seigel, R.A., Collins, J.T., Novak, S.S. (Eds.), Snakes: Ecology and Evolutionary Biology. Macmillan, New York, pp. 3-50.
- Minh, B.Q., Hahn, M.W., Lanfear, R., 2020a. New methods to calculate concordance factors for phylogenomic datasets. Mol. Biol. Evol. 37, 2727-2733.
- Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A., Lanfear, R., 2020b. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534.
- Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S., Warnow, T., 2014. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30, i541-i548.
- Mirarab, S., Bayzid, M.S., Warnow, T., 2016. Evaluating summary methods for multilocus species tree estimation in the presence of incomplete lineage sorting. Syst. Biol. 65, 366-380.
- Mocquard, F., 1888. Sur une collection de Reptiles et de Batraciens rapport´es des Pays Comalis et de Zanzibar par M.G. R´evoil. M´emoires Publies par la Soci´ete´ Philomathique a l' occasion du Centenaire de sa fondation 1788-1888, 109-134.
- Nagy, Z.T., Vidal, N., Vences, M., Branch, W.R., Pauwels, O.S.G., Wink, M., Joger, U., 2005. Molecular systematics of African Colubroidea (Squamata: Serpentes). In: Huber, B.A., Sinclair, B.J., Lampe, K.-.-H. (Eds.), African Biodiversity: Molecules, Organisms, Ecosystems. Proc. 5th Intern. Symp. Trop. Biol. Springer Verlag, Museum Koenig Bonn, pp. 221-228.
- O' Shea, M., 2018. The Book of Snakes: A Life-Size Guide to Six Hundred Species from Around the World. The University of Chicago Press, Chicago.
- Portillo, F., Branch, W.R., Conradie, W., R¨odel, M.O., Penner, J., Barej, M.F., Kusamba, C., Muninga, W.M., Mwenebatu, M.A., Bauer, A.M., Trape, J.F., Nagy, Z. T., Carlino, P., Pauwels, O.S.G., Menegon, M., Burger, M., Mazuch, T., Jackson, K., Hughes, D.F., Behangana, M., Zassi-Boulou, A.-G., Greenbaum, E., 2018. Phylogeny and biogeography of the African burrowing snake subfamily Aparallactinae (Squamata: Lamprophiidae). Mol. Phylogenet. Evol. 127, 288-303.
- Portillo, F., Stanley, E.L., Branch, W.R., Conradie, W., R¨odel, M.O., Penner, J., Barej, M. F., Kusamba, C., Muninga, W.M., Mwenebatu, M.A., Bauer, A.M., Trape, J.F., Nagy, Z.T., Carlino, P., Pauwels, O.S.G., Menegon, M., Ineich, I., Burger, M., Zassi-Boulou, A.-G., Mazuch, T., Jackson, K., Hughes, D.F., Behangana, M., Greenbaum, E., 2019. Evolutionary history of burrowing asps (Lamprophiidae:Atractaspidinae) with emphasis on fang evolution and prey selection. PLoS One 14, e0214889.
- Pyron, R.A., Burbrink, F.T., Colli, G.R., De Oca, A.N.M., Vitt, L.J., Kuczynski, C.A., Wiens, J.J., 2011. The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol. Phylogenet. Evol. 58, 329-342.
- Pyron, R.A., Burbrink, F.T., Wiens, J.J., 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93.
- Pyron, R.A., Hendry, C.R., Chou, V.M., Lemmon, E.M., Lemmon, A.R., Burbrink, F.T., 2014. Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia). Mol. Phylogenet. Evol. 81, 221-231.
- Rambaut, A., 2010. FigTree v1.3.1. http://tree.bio.ed.ac.uk/software/figtree/.
- Rasmussen, J.B., 2002. A review of the African members of the genus Micrelaps Boettger 1880 (Serpentes Atractaspididae). Tropical Zoology 15, 71-87.
- Reddy, S., Kimball, R.T., Pandey, A., Hosner, P.A., Braun, M.J., Hackett, S.J., Han, K.L., Harshman, J., Huddleston, C.J., Kingston, S., Marks, B.D., 2017. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst. Biol 66, 857-879.
- Rokas, A., Carroll, S.B., 2006. Bushes in the tree of life. PLoS Biol. 4, e352.
- Rosenberg, M.S., Kumar, S., 2001. Incomplete taxon sampling is not a problem for phylogenetic inference. Proc. Natl. Acad. Sci. U.S.A. 98, 10751-10756.
- Rosenberg, M.S., Kumar, S., 2003. Taxon sampling, bioinformatics, and phylogenomics. Syst. Biol. 52, 119-124.
- Ruane, S., Raxworthy, C.J., Lemmon, A.R., Lemmon, E.M., Burbrink, F.T., 2015. Comparing species tree estimation with large anchored phylogenomic and small Sanger-sequenced molecular datasets: an empirical study on Malagasy pseudoxyrhophiine snakes. BMC Evol. Biol. 15, 1-14.
- Sayyari, E., Mirarab, S., 2016. Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol. 33, 1654-1668.
- Scanlon, J.D., 2003. The Australian elapid genus Cacophis: Morphology and phylogeny of rainforest crowned snakes. Herpetol. J. 13, 1-20.
- Scanlon, J.D., Lee, M.S., 2004. Phylogeny of Australasian venomous snakes (Colubroidea, Elapidae, Hydrophiinae) based on phenotypic and molecular evidence. Zool. Scr. 33, 335-366.
- Spawls, S., Branch, B., 2020. The Dangerous Snakes of Africa. Bloomsbury, London.
- Spawls, S., Howell, K., Hinkel, H., Menegon, M., 2018. Field Guide to East African Reptiles, second edition. Bloomsbury Wildlife, London.
- Sternfeld, R., 1908. Zur Schlangenfauna Ostafrikas. I. Schlangen aus Sud-Abessinien. Mitt. Zool. Mus. Berlin 4, 239-247.
- Tamura, K., Battistuzzi, F.U., Billing-Ross, P., Murillo, O., Filipski, A., Kumar, S., 2012. Estimating divergence times in large molecular phylogenies. Proc. Natl. Acad. Sci. U. S.A. 109, 19333-19338.
- Tamura, K., Tao, Q., Kumar, S., 2018. Theoretical foundation of the RelTime method for estimating divergence times from variable evolutionary rates. Mol. Biol Evol. 35, 1770-1782.
- Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022-3027.
- Tao, Q., Tamura, K., Mello, B., Kumar, S., 2020. Reliable confidence intervals for RelTime estimates of evolutionary divergence times. Mol. Biol. Evol. 37, 280-290.
- Tilic, E., Sayyari, E., Stiller, J., Mirarab, S., Rouse, G.W., 2020. More is needed-Thousands of loci are required to elucidate the relationships of the 'flowers of the sea' (Sabellida, Annelida). Mol. Phylogenet. Evol. 151, 106892.
- Tolley, K.A., Townsend, T.M., Vences, M., 2013. Large-scale phylogeny of chameleons suggests African origins and Eocene diversification. Proc. R. Soc. B 280, 20130184.
- Underwood, G., Kochva, E., 1993. On the affinities of the burrowing asps Atractaspis (Serpentes: Atractaspididae). Zool. J. Linn. Soc. 107, 3-64.
- Vidal, N., Delmas, A.S., David, P., Cruaud, C., Couloux, A., Hedges, S.B., 2007. The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. C. R. Biol. 330, 182-187.
- Vidal, N., Hedges, S.B., 2002. Higher-level relationships of caenophidian snakes inferred from four nuclear and mitochondrial genes. C. R. Biol. 325, 987-995.
- Weinell, J.L., Brown, R.M., 2018. Discovery of an old, archipelago-wide, endemic radiation of Philippine snakes. Mol. Phylogenet. Evol. 119, 144-150.
- Weinell, J.L., Paluh, D.J., Siler, C.D., Brown, R.M., 2020. A new, miniaturized genus and species of snake (Cyclocoridae) from the Philippines. Copeia 108, 907-923.
- Werner, Y.L., Babocsay, G., Carmely, H., Thuna, M., 2006. Micrelaps in the southern Levant: variation, sexual dimorphism, and a new species (Serpentes: Atractaspididae). Zool. Middle East 38, 29-48.
- Whitfield, J.B., Kjer, K.M., 2008. Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annu. Rev. Entomol. 53, 449-472.
- Whitfield, J.B., Lockhart, P.J., 2007. Deciphering ancient rapid radiations. Trends Ecol. Evol. 22, 258-265.
- Zaher, H., Grazziotin, F.G., Cadle, J.E., Murphy, R.W., Moura-Leite, J.C.D., Bonatto, S.L., 2009. Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American xenodontines: a revised classification and descriptions of new taxa. Pap. Avulsos Zool. 49, 115-153.
- Zaher, H., Murphy, R.W., Arredondo, J.C., Graboski, R., Machado-Filho, P.R., Mahlow, K., Montingelli, G.G., Quadros, A.B., Orlov, N.L., Wilkinson, M., Zhang, Y. P., Grazziotin, F.G., 2019. Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PLoS One 14, e0216148.
- Zhang, C., Sayyari, E., Mirarab, S., 2017. ASTRAL-III: Increased Scalability and Impacts of Contracting Low Support Branches. In: Meidanis, J., Nakhleh, L. (Eds.) Comparative Genomics. RECOMB-CG 2017. Lecture Notes in Computer Science, Volume 10562. Springer, Cham, pp. 53-75.
- Zhang, C., Mirarab, S., 2022. Weighting by gene tree uncertainty improves accuracy of quartet-based species trees. Mol. Biol. Evol. 49, msac215.
- Zheng, Y., Wiens, J.J., 2016. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 94, 537-547.
- Zwickl, D.J., Hillis, D.M., 2002. Increased taxon sampling greatly reduces phylogenetic error. Syst. Biol. 51, 588-598.