Published March 9, 2023 | Version v1
Journal article Open

New Ideas On Super Lith By Hyper Lite Of List-Coloring In Cancer's Recognition With (Neutrosophic) SuperHyperGraph

Authors/Creators

  • 1. Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

Description

“#185 Article”

Henry Garrett, “New Ideas On Super Lith By Hyper Lite Of List-Coloring In Cancer's Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.16356.04489).

@ResearchGate: https://www.researchgate.net/publication/369113233
@Scribd: https://www.scribd.com/document/-
@ZENODO_ORG: https://zenodo.org/record/-
@academia: https://www.academia.edu/-

 

\documentclass[10pt,letterpaper]{article}
\usepackage[top=0.85in,left=2.79in,footskip=0.79in,marginparwidth=2in]{geometry}
\usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, tikz, color}
\usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref}
% use Unicode characters - try changing the option if you run into troubles with special characters (e.g. umlauts)
\usepackage[utf8]{inputenc}

% clean citations
\usepackage{cite}

% hyperref makes references clicky. use \url{www.example.com} or \href{www.example.com}{description} to add a clicky url
\usepackage{nameref,hyperref}

% line numbers
\usepackage[right]{lineno}

% improves typesetting in LaTeX
\usepackage{microtype}
\DisableLigatures[f]{encoding = *, family = * }

% text layout - change as needed
\raggedright
\setlength{\parindent}{0.5cm}
\textwidth 5.25in
\textheight 8.79in

% Remove % for double line spacing
%\usepackage{setspace}
%\doublespacing

% use adjustwidth environment to exceed text width (see examples in text)
\usepackage{changepage}

% adjust caption style
\usepackage[aboveskip=1pt,labelfont=bf,labelsep=period,singlelinecheck=off]{caption}

% remove brackets from references
\makeatletter
\renewcommand{\@biblabel}[1]{\quad#1.}
\makeatother

% headrule, footrule and page numbers
\usepackage{lastpage,fancyhdr,graphicx}
\usepackage{epstopdf}
\pagestyle{myheadings}
\pagestyle{fancy}
\fancyhf{}
\rfoot{\thepage/\pageref{LastPage}}
\renewcommand{\footrule}{\hrule height 2pt \vspace{2mm}}
\fancyheadoffset[L]{2.25in}
\fancyfootoffset[L]{2.25in}

% use \textcolor{color}{text} for colored text (e.g. highlight to-do areas)
\usepackage{color}

% define custom colors (this one is for figure captions)
\definecolor{Gray}{gray}{.25}

% this is required to include graphics
\usepackage{graphicx}

% use if you want to put caption to the side of the figure - see example in text
\usepackage{sidecap}
\usepackage{leftidx}
% use for have text wrap around figures
\usepackage{wrapfig}
\usepackage[pscoord]{eso-pic}
\usepackage[fulladjust]{marginnote}
\reversemarginpar
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{xca}[theorem]{Exercise}
\theoremstyle{remark}
\newtheorem{remark}[theorem]{Remark}
\theoremstyle{observation}
\newtheorem{observation}[theorem]{Observation}
\theoremstyle{question}
\newtheorem{question}[theorem]{Question}
\theoremstyle{problem}
\newtheorem{problem}[theorem]{Problem}
\numberwithin{equation}{section}
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhf{}
\fancyhead[LE,RO]{Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA }
\fancyfoot[LE,RO]{Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA }
% document begins here
\begin{document}
\vspace*{0.35in}
\linenumbers
% title goes here:
\begin{flushleft}
{\Large
\textbf\newline{
New Ideas On Super Lith By Hyper Lite Of List-Coloring In Cancer's Recognition With (Neutrosophic) SuperHyperGraph
}
}
\newline
\newline
Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA
% authors go here:

\end{flushleft}
\section{ABSTRACT}
In this scientific research, (Different Neutrosophic Types of Neutrosophic SuperHyperList-Coloring). Assume a Neutrosophic SuperHyperGraph (NSHG) $S$ is a List-Coloring pair $S=(V,E).$ Consider a Neutrosophic SuperHyperSet $V'=\{V_1,V_2,\ldots,V_s\}$ and $E'=\{E_1,E_2,\ldots,E_z\}.$ Then either $V'$ or $E'$ is called Neutrosophic e-SuperHyperList-Coloring if the following expression is called Neutrosophic e-SuperHyperList-Coloring criteria holds
  \begin{eqnarray*}
  &&
\forall E\in E_{NSHG}, E\sim i,~i\in \Bbb N
\\&&
\forall E_a\in E_{NSHG}, \exists E_b\in E':
\\&&
 E_a\sim i,E_b\sim j,~i\neq j~i,j\in \Bbb N;
\end{eqnarray*}  Neutrosophic re-SuperHyperList-Coloring if the following expression is called Neutrosophic e-SuperHyperList-Coloring criteria holds
  \begin{eqnarray*}
  &&
\forall E\in E_{NSHG}, E\sim i,~i\in \Bbb N
\\&&
\forall E_a\in E_{NSHG}, \exists E_b\in E':
\\&&
 E_a\sim i,E_b\sim j,~i\neq j~i,j\in \Bbb N;
\end{eqnarray*}
 and $|E_i|_{\text{NEUTROSOPIC CARDINALITY}}=|E_j|_{\text{NEUTROSOPIC CARDINALITY}};$ Neutrosophic v-SuperHyperList-Coloring  if the following expression is called Neutrosophic v-SuperHyperList-Coloring criteria holds
  \begin{eqnarray*}
  &&
\forall V\in V_{NSHG}, V\sim i,~i\in \Bbb N
\\&&
\forall V_a\in V_{NSHG}, \exists V_b\in V':
\\&&
 V_a\sim i,V_j\sim j,~i\neq j~i,j\in \Bbb N;
\end{eqnarray*}
  Neutrosophic rv-SuperHyperList-Coloring if the following expression is called Neutrosophic v-SuperHyperList-Coloring criteria holds
  \begin{eqnarray*}
  &&
\forall V\in V_{NSHG}, V\sim i,~i\in \Bbb N
\\&&
\forall V_a\in V_{NSHG}, \exists V_b\in V':
\\&&
 V_a\sim i,V_j\sim j,~i\neq j~i,j\in \Bbb N;
\end{eqnarray*} and $|V_i|_{\text{NEUTROSOPIC CARDINALITY}}=|V_j|_{\text{NEUTROSOPIC CARDINALITY}};$ Neutrosophic SuperHyperList-Coloring if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring. ((Neutrosophic) SuperHyperList-Coloring).
 Assume a Neutrosophic SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$ Consider a Neutrosophic SuperHyperEdge (NSHE) $E=\{V_1,V_2,\ldots,V_s\}.$
Then $E$ is called an Extreme SuperHyperList-Coloring if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperEdges in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperList-Coloring; a Neutrosophic SuperHyperList-Coloring if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for a  Neutrosophic SuperHyperGraph $NSHG:(V,E)$ is the maximum Neutrosophic cardinality of the Neutrosophic SuperHyperEdges of a Neutrosophic SuperHyperSet $S$ of high Neutrosophic cardinality  consecutive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form the Neutrosophic SuperHyperList-Coloring; an Extreme SuperHyperList-Coloring SuperHyperPolynomial  if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperList-Coloring; and the Extreme power is corresponded to its Extreme coefficient; a Neutrosophic SuperHyperList-Coloring SuperHyperPolynomial if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for a Neutrosophic SuperHyperGraph $NSHG:(V,E)$ is the Neutrosophic SuperHyperPolynomial contains the Neutrosophic coefficients defined as the Neutrosophic number of the maximum Neutrosophic cardinality of the Neutrosophic SuperHyperEdges of a Neutrosophic SuperHyperSet $S$ of high Neutrosophic cardinality consecutive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form the Neutrosophic SuperHyperList-Coloring; and the Neutrosophic power is corresponded to its Neutrosophic coefficient; an Extreme V-SuperHyperList-Coloring if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperVertices in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperList-Coloring; a Neutrosophic V-SuperHyperList-Coloring if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for a Neutrosophic SuperHyperGraph $NSHG:(V,E)$ is the maximum Neutrosophic cardinality of the Neutrosophic SuperHyperVertices of a Neutrosophic SuperHyperSet $S$ of high Neutrosophic cardinality consecutive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form the Neutrosophic SuperHyperList-Coloring; an Extreme V-SuperHyperList-Coloring SuperHyperPolynomial if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperList-Coloring; and the Extreme power is corresponded to its Extreme coefficient; a Neutrosophic SuperHyperList-Coloring SuperHyperPolynomial if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for a Neutrosophic SuperHyperGraph $NSHG:(V,E)$ is  the Neutrosophic SuperHyperPolynomial contains the Neutrosophic coefficients defined as the Neutrosophic number of the maximum Neutrosophic cardinality of the Neutrosophic SuperHyperVertices of a Neutrosophic SuperHyperSet $S$ of high Neutrosophic cardinality consecutive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form the Neutrosophic SuperHyperList-Coloring; and the Neutrosophic power is corresponded to its Neutrosophic coefficient.  In this scientific research, new setting is introduced for new SuperHyperNotions, namely, a SuperHyperList-Coloring  and Neutrosophic SuperHyperList-Coloring. Two different types of SuperHyperDefinitions are debut for them but the research goes further and the SuperHyperNotion, SuperHyperUniform, and  SuperHyperClass based on that are well-defined and well-reviewed. The literature review is implemented in the whole of this research. For shining the elegancy and the significancy of this research, the comparison between this SuperHyperNotion with other SuperHyperNotions and fundamental SuperHyperNumbers are featured. The definitions are followed by the examples and the instances thus the clarifications are driven with different tools. The applications are figured out to make sense about the theoretical aspect of this ongoing research. The ``Cancer's Recognition'' are the under research to figure out the challenges make sense about ongoing and upcoming research. The special case is up. The cells are viewed in the deemed ways. There are different types of them. Some of them are individuals and some of them are well-modeled by the group of cells. These types are all officially called ``SuperHyperVertex'' but the relations amid them all officially called ``SuperHyperEdge''. The frameworks ``SuperHyperGraph'' and ``Neutrosophic SuperHyperGraph'' are chosen and elected to research about ``Cancer's Recognition''. Thus these complex and dense SuperHyperModels open up some avenues to research on theoretical segments and ``Cancer's Recognition''. Some avenues are posed to pursue this research. It's also officially collected in the form of some questions and some problems. Assume a SuperHyperGraph. Assume a SuperHyperGraph. Then $\delta-$SuperHyperList-Coloring is a maximal    of SuperHyperVertices with a maximum cardinality such that either of the following expressions hold for the (Neutrosophic) cardinalities of  SuperHyperNeighbors of $s\in S:$ there are $|S\cap N(s)| > |S\cap (V\setminus N(s))|+\delta;$ and $ |S\cap N(s)| < |S\cap (V\setminus N(s))|+\delta.$
The first Expression, holds if $S$ is an $\delta-$SuperHyperOffensive. And the second Expression, holds if $S$ is an $\delta-$SuperHyperDefensive; a Neutrosophic $\delta-$SuperHyperList-Coloring is a maximal Neutrosophic     of SuperHyperVertices with maximum Neutrosophic cardinality such that either of the following expressions hold for the Neutrosophic cardinalities of  SuperHyperNeighbors of $s\in S$ there are: $|S\cap N(s)|_{Neutrosophic} > |S\cap (V\setminus N(s))|_{Neutrosophic}+\delta;$ and
$ |S\cap N(s)|_{Neutrosophic} < |S\cap (V\setminus N(s))|_{Neutrosophic}+\delta.$
The first Expression, holds if $S$ is a Neutrosophic $\delta-$SuperHyperOffensive. And the second Expression, holds if $S$ is a Neutrosophic $\delta-$SuperHyperDefensive
  It's useful to define a ``Neutrosophic'' version of a SuperHyperList-Coloring . Since there's more ways to get type-results to make a SuperHyperList-Coloring  more understandable. For the sake of having Neutrosophic SuperHyperList-Coloring, there's a need to ``redefine'' the notion of a ``SuperHyperList-Coloring ''. The SuperHyperVertices and the SuperHyperEdges are assigned by the labels from the letters of the alphabets. In this procedure, there's the usage of the position of labels to assign to the values. Assume a SuperHyperList-Coloring . It's redefined a Neutrosophic SuperHyperList-Coloring  if the mentioned Table holds, concerning, ``The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Neutrosophic SuperHyperGraph'' with the key points,  
``The Values of The Vertices \& The Number of Position in Alphabet'',
``The Values of The SuperVertices\&The maximum Values of Its Vertices'',
``The Values of The Edges\&The maximum Values of Its Vertices'',
``The Values of The HyperEdges\&The maximum Values of Its Vertices'', ``The Values of The SuperHyperEdges\&The maximum Values of Its Endpoints''. To get structural examples and instances, I'm going to introduce the next SuperHyperClass of SuperHyperGraph based on a SuperHyperList-Coloring . It's the main. It'll be disciplinary to have the foundation of previous definition in the kind of SuperHyperClass. If there's a need to have all SuperHyperList-Coloring until the SuperHyperList-Coloring, then it's officially called a ``SuperHyperList-Coloring'' but otherwise, it isn't a SuperHyperList-Coloring . There are some instances about the clarifications for the main definition titled a ``SuperHyperList-Coloring ''. These two examples get more scrutiny and discernment since there are characterized in the disciplinary ways of the SuperHyperClass based on a SuperHyperList-Coloring . For the sake of having a Neutrosophic SuperHyperList-Coloring, there's a need to ``redefine'' the notion of a ``Neutrosophic SuperHyperList-Coloring'' and a ``Neutrosophic SuperHyperList-Coloring ''. The SuperHyperVertices and the SuperHyperEdges are assigned by the labels from the letters of the alphabets. In this procedure, there's the usage of the position of labels to assign to the values. Assume a Neutrosophic SuperHyperGraph. It's redefined ``Neutrosophic SuperHyperGraph'' if the intended Table holds. And a SuperHyperList-Coloring  are redefined to a ``Neutrosophic SuperHyperList-Coloring'' if the intended Table holds. It's useful to define ``Neutrosophic'' version of SuperHyperClasses. Since there's more ways to get Neutrosophic type-results to make a Neutrosophic SuperHyperList-Coloring  more understandable. Assume a Neutrosophic SuperHyperGraph. There are some Neutrosophic SuperHyperClasses if the intended Table holds. Thus  SuperHyperPath,  SuperHyperList-Coloring, SuperHyperStar, SuperHyperBipartite, SuperHyperMultiPartite, and   SuperHyperWheel, are
``Neutrosophic SuperHyperPath'', ``Neutrosophic SuperHyperList-Coloring'', ``Neutrosophic SuperHyperStar'', ``Neutrosophic SuperHyperBipartite'', ``Neutrosophic SuperHyperMultiPartite'', and ``Neutrosophic SuperHyperWheel'' if the intended Table holds.  A SuperHyperGraph has a ``Neutrosophic SuperHyperList-Coloring'' where it's the strongest [the maximum Neutrosophic value from all the SuperHyperList-Coloring  amid the maximum value amid all SuperHyperVertices from a SuperHyperList-Coloring .] SuperHyperList-Coloring . A graph is a SuperHyperUniform if it's a SuperHyperGraph and the number of elements of SuperHyperEdges are the same. Assume a Neutrosophic SuperHyperGraph. There are some SuperHyperClasses as follows. It's SuperHyperPath if it's only one SuperVertex as intersection amid two given SuperHyperEdges with two exceptions; it's SuperHyperList-Coloring if it's only one SuperVertex as intersection amid two given SuperHyperEdges; it's SuperHyperStar it's only one SuperVertex as intersection amid all SuperHyperEdges;
it's SuperHyperBipartite it's only one SuperVertex as intersection amid two given SuperHyperEdges and these SuperVertices, forming two separate sets, has no SuperHyperEdge in common; it's SuperHyperMultiPartite  it's only one SuperVertex as intersection amid two given SuperHyperEdges and these SuperVertices, forming multi separate sets, has no SuperHyperEdge in common; it's a SuperHyperWheel if it's only one SuperVertex as intersection amid two given SuperHyperEdges and one SuperVertex has one SuperHyperEdge with any common SuperVertex. The SuperHyperModel proposes the specific designs and the specific architectures. The SuperHyperModel is officially called ``SuperHyperGraph'' and ``Neutrosophic SuperHyperGraph''. In this SuperHyperModel, The ``specific'' cells and ``specific group'' of cells are SuperHyperModeled as ``SuperHyperVertices'' and the common and intended properties between ``specific'' cells and ``specific group'' of cells are SuperHyperModeled as ``SuperHyperEdges''. Sometimes, it's useful to have some degrees of determinacy, indeterminacy, and neutrality to have more precise SuperHyperModel which in this case the SuperHyperModel is called ``Neutrosophic''. In the future research, the foundation will be based on the ``Cancer's Recognition'' and the results and the definitions will be introduced in redeemed ways. The recognition of the cancer in the long-term function. The specific region has been assigned by the model [it's called SuperHyperGraph] and the long cycle of the move from the cancer is identified by this research. Sometimes the move of the cancer hasn't be easily identified since there are some determinacy, indeterminacy and neutrality about the moves and the effects of the cancer on that region; this event leads us to choose another model [it's said to be Neutrosophic SuperHyperGraph] to have convenient perception on what's happened and what's done. There are some specific models, which are well-known and they've got the names, and some SuperHyperGeneral SuperHyperModels. The moves and the traces of the cancer on the complex tracks and between complicated groups of cells could be fantasized by a Neutrosophic SuperHyperPath(-/SuperHyperList-Coloring, SuperHyperStar, SuperHyperBipartite, SuperHyperMultipartite,  SuperHyperWheel). The aim is to find either the longest SuperHyperList-Coloring  or the strongest SuperHyperList-Coloring  in those Neutrosophic SuperHyperModels. For the longest SuperHyperList-Coloring, called SuperHyperList-Coloring, and the strongest SuperHyperList-Coloring, called Neutrosophic SuperHyperList-Coloring, some general results are introduced. Beyond that in SuperHyperStar, all possible SuperHyperPaths have only two SuperHyperEdges but it's not enough since it's essential to have at least three SuperHyperEdges to form any style of a SuperHyperList-Coloring. There isn't any formation of any SuperHyperList-Coloring but literarily, it's the deformation of any SuperHyperList-Coloring. It, literarily, deforms and it doesn't form.  A basic familiarity with Neutrosophic  SuperHyperList-Coloring theory, SuperHyperGraphs, and Neutrosophic SuperHyperGraphs theory are proposed.
\\ \vspace{4mm}
\textbf{Keywords:} Neutrosophic SuperHyperGraph, SuperHyperList-Coloring, Cancer's Neutrosophic Recognition
   \\
\textbf{AMS Subject Classification:} 05C17, 05C22, 05E45
\section{Applied Notions Under The Scrutiny Of The Motivation Of This Scientific Research}
In this scientific research, there are some ideas in the featured frameworks of motivations. I try to bring the motivations in the narrative ways. Some cells have been faced with some attacks from the situation which is caused by the cancer's attacks. In this case, there are some embedded analysis on the ongoing situations which in that, the cells could be labelled as some groups and some groups or individuals have excessive labels which all are raised from the behaviors to overcome the cancer's attacks. In the embedded situations, the individuals of cells and the groups of cells could be considered as ``new groups''. Thus it motivates us to find the proper SuperHyperModels for getting more proper analysis on this messy story. I've found the SuperHyperModels which are officially called ``SuperHyperGraphs'' and ``Extreme SuperHyperGraphs''. In this SuperHyperModel, the cells and the groups of cells are defined as ``SuperHyperVertices'' and the relations between the individuals of cells and the groups of cells are defined as ``SuperHyperEdges''. Thus it's another motivation for us to do research on this SuperHyperModel based on the ``Cancer's Recognition''. Sometimes, the situations get worst. The situation is passed from the certainty and precise style. Thus it's the beyond them. There are three descriptions, namely, the degrees of determinacy, indeterminacy and neutrality, for any object based on vague forms, namely, incomplete data, imprecise data, and uncertain analysis. The latter model could be considered on the previous SuperHyperModel. It's SuperHyperModel. It's SuperHyperGraph but it's officially called ``Extreme SuperHyperGraphs''. The cancer is the disease but the model is going to figure out what's going on this phenomenon. The special case of this disease is considered and as the consequences of the model, some parameters are used. The cells are under attack of this disease but the moves of the cancer in the special region are the matter of mind. The recognition of the cancer could help to find some treatments for this disease. The SuperHyperGraph and Extreme SuperHyperGraph are the SuperHyperModels on the ``Cancer's Recognition'' and both bases are the background of this research. Sometimes the cancer has been happened on the region, full of cells, groups of cells and embedded styles. In this segment, the SuperHyperModel proposes some SuperHyperNotions based on the connectivities of the moves of the cancer in the forms of alliances' styles with the formation of the design and the architecture are formally called ``  SuperHyperList-Coloring'' in the themes of jargons and buzzwords. The prefix ``SuperHyper'' refers to the theme of the embedded styles to figure out the background for the SuperHyperNotions.  The recognition of the cancer in the long-term function. The specific region has been assigned by the model [it's called SuperHyperGraph] and the long cycle of the move from the cancer is identified by this research. Sometimes the move of the cancer hasn't be easily identified since there are some determinacy, indeterminacy and neutrality about the moves and the effects of the cancer on that region; this event leads us to choose another model [it's said to be Extreme SuperHyperGraph] to have convenient perception on what's happened and what's done. There are some specific models, which are well-known and they've got the names, and some general models. The moves and the traces of the cancer on the complex tracks and between complicated groups of cells could be fantasized by an Extreme SuperHyperPath (-/SuperHyperList-Coloring, SuperHyperStar, SuperHyperBipartite, SuperHyperMultipartite,  SuperHyperWheel). The aim is to find either the optimal   SuperHyperList-Coloring or the Extreme   SuperHyperList-Coloring in those Extreme SuperHyperModels. Some general results are introduced. Beyond that in SuperHyperStar, all possible Extreme SuperHyperPath s have only two SuperHyperEdges but it's not enough since it's essential to have at least three SuperHyperEdges to form any style of a SuperHyperList-Coloring. There isn't any formation of any SuperHyperList-Coloring but literarily, it's the deformation of any SuperHyperList-Coloring. It, literarily, deforms and it doesn't form.
\begin{question}
How to define the SuperHyperNotions and to do research on them to find the `` amount of   SuperHyperList-Coloring'' of either individual of cells or the groups of cells based on the fixed cell or the fixed group of cells, extensively, the ``amount of   SuperHyperList-Coloring'' based on the fixed groups of cells or the fixed groups of group of cells?
\end{question}
\begin{question}
What are the best descriptions for the ``Cancer's Recognition'' in terms of these messy and dense SuperHyperModels where embedded notions are illustrated?
\end{question}
It's motivation to find notions to use in this dense model is titled ``SuperHyperGraphs''. Thus it motivates us to define different types of ``  SuperHyperList-Coloring'' and ``Extreme   SuperHyperList-Coloring'' on ``SuperHyperGraph'' and ``Extreme SuperHyperGraph''. Then the research has taken more motivations to define SuperHyperClasses and to find some connections amid this SuperHyperNotion with other SuperHyperNotions. It motivates us to get some instances and examples to make clarifications about the framework of this research. The general results and some results about some connections are some avenues to make key point of this research, ``Cancer's Recognition'', more understandable and more clear.
\\
The framework of this research is as follows. In the beginning, I introduce basic definitions to clarify about preliminaries. In the subsection ``Preliminaries'', initial definitions about SuperHyperGraphs and Extreme SuperHyperGraph are deeply-introduced and in-depth-discussed. The elementary concepts are clarified and illustrated completely and sometimes review literature are applied to make sense about what's going to figure out about the upcoming sections. The main definitions and their clarifications alongside some results about new notions,   SuperHyperList-Coloring and Extreme   SuperHyperList-Coloring, are figured out in sections ``  SuperHyperList-Coloring'' and ``Extreme   SuperHyperList-Coloring''. In the sense of tackling on getting results and in List-Coloring to make sense about continuing the research, the ideas of SuperHyperUniform and Extreme SuperHyperUniform are introduced and as their consequences, corresponded SuperHyperClasses are figured out to debut what's done in this section, titled ``Results on SuperHyperClasses'' and ``Results on Extreme SuperHyperClasses''. As going back to origin of the notions, there are some smart steps toward the common notions to extend the new notions in new frameworks, SuperHyperGraph and Extreme SuperHyperGraph, in the sections ``Results on SuperHyperClasses'' and ``Results on Extreme SuperHyperClasses''. The starter research about the general SuperHyperRelations and as concluding and closing section of theoretical research are contained in the section ``General Results''. Some general SuperHyperRelations are fundamental and they are well-known as fundamental SuperHyperNotions as elicited and discussed in the sections, ``General Results'',
``  SuperHyperList-Coloring'', ``Extreme   SuperHyperList-Coloring'', ``Results on SuperHyperClasses'' and ``Results on Extreme SuperHyperClasses''. There are curious questions about what's done about the SuperHyperNotions to make sense about excellency of this research and going to figure out the word ``best'' as the description and adjective for this research as presented in section, ``  SuperHyperList-Coloring''. The keyword of this research debut in the section ``Applications in Cancer's Recognition'' with two cases and subsections ``Case 1: The Initial Steps Toward SuperHyperBipartite as SuperHyperModel'' and ``Case 2: The Increasing Steps Toward SuperHyperMultipartite as SuperHyperModel''. In the section, ``Open Problems'', there are some scrutiny and discernment on what's done and what's happened in this research in the terms of ``questions'' and ``problems'' to make sense to figure out this research in featured style. The advantages and the limitations of this research alongside about what's done in this research to make sense  and to get sense about what's figured out are included in the section, ``Conclusion and Closing Remarks''.
\section{Extreme Preliminaries Of This Scientific Research On the Redeemed Ways}
In this section, the basic material in this scientific research, is referred to [Single Valued Neutrosophic Set](\textbf{Ref.}\cite{HG38},Definition 2.2,p.2), [Neutrosophic Set](\textbf{Ref.}\cite{HG38},Definition 2.1,p.1), [Neutrosophic SuperHyperGraph (NSHG)](\textbf{Ref.}\cite{HG38},Definition 2.5,p.2), [Characterization of the Neutrosophic SuperHyperGraph (NSHG)](\textbf{Ref.}\cite{HG38},Definition 2.7,p.3), [t-norm](\textbf{Ref.}\cite{HG38}, Definition 2.7, p.3), and [Characterization of the Neutrosophic SuperHyperGraph (NSHG)](\textbf{Ref.}\cite{HG38},Definition 2.7,p.3), [Neutrosophic Strength of the Neutrosophic SuperHyperPaths] (\textbf{Ref.}\cite{HG38},Definition 5.3,p.7), and [Different Neutrosophic Types of Neutrosophic SuperHyperEdges (NSHE)] (\textbf{Ref.}\cite{HG38},Definition 5.4,p.7). Also, the new ideas and their clarifications are addressed to \textbf{Ref.}\cite{HG38}.
\\
In this subsection, the basic material which is used in this scientific research, is presented. Also, the new ideas and their clarifications are elicited.
\begin{definition}[Neutrosophic Set](\textbf{Ref.}\cite{HG38},Definition 2.1,p.1).\\
 Let $X$ be a List-Coloring of points (objects) with generic elements in $X$ denoted by $x;$ then the \textbf{Neutrosophic set} $A$ (NS $A$) is an object having the form
$$A = \{< x:T_A(x),I_A(x),F_A(x)>, x\in X\}$$
where the functions $T, I, F: X\rightarrow]^-0,1\leftidx{^+}{[}$ define respectively the a \textbf{truth-membership function}, an \textbf{indeterminacy-membership function}, and a \textbf{falsity-membership function} of the element $x\in X$ to the set $A$ with the condition
$$\leftidx{^-}{0} \leq T_A(x)+I_A(x)+F_A(x)\leq 3^{+}.$$
The functions $T_A(x),I_A(x)$ and $F_A(x)$ are real standard or nonstandard subsets of $]^-0,1\leftidx{^+}{[}.$
\end{definition}
\begin{definition}[Single Valued Neutrosophic Set](\textbf{Ref.}\cite{HG38},Definition 2.2,p.2).\\
 Let $X$ be a List-Coloring of points (objects) with generic elements in $X$ denoted by $x.$ A \textbf{single valued Neutrosophic set} $A$ (SVNS $A$) is characterized by truth-membership function $T_A(x),$ an indeterminacy-membership function $I_A(x),$ and a falsity-membership function $F_A(x).$ For each point $x$ in $X,$ $T_A(x),I_A(x),F_A(x)\in [0,1].$ A SVNS $A$ can be written as
 $$A = \{< x:T_A(x),I_A(x),F_A(x)>, x\in X\}.$$
\end{definition}
\begin{definition}
The \textbf{degree of truth-membership}, \textbf{indeterminacy-membership} and \textbf{falsity-membership of the subset} $X\subset A$ of the single valued Neutrosophic set  $A = \{< x:T_A(x),I_A(x),F_A(x)>, x\in X\}$:$$T_A(X)=\min[T_A(v_i),T_A(v_j)]_{v_i,v_j\in X},$$
$$I_A(X)=\min[I_A(v_i),I_A(v_j)]_{v_i,v_j\in X},$$
$$ \text{and}~F_A(X)=\min[F_A(v_i),F_A(v_j)]_{v_i,v_j\in X}.$$
\end{definition}
\begin{definition}
The \textbf{support} of $X\subset A$ of the single valued Neutrosophic set  $A = \{< x:T_A(x),I_A(x),F_A(x)>, x\in X\}$:
$$supp(X)=\{x\in X:~T_A(x),I_A(x),F_A(x)> 0\}.$$
\end{definition}
\begin{definition}[Neutrosophic SuperHyperGraph (NSHG)](\textbf{Ref.}\cite{HG38},Definition 2.5,p.2).\\
Assume $V'$ is a given set. a \textbf{Neutrosophic SuperHyperGraph} (NSHG) $S$
is a pair $S=(V,E),$ where
\begin{itemize}
\item[$(i)$] $V=\{V_1,V_2,\ldots,V_n\}$ a finite set of finite single valued Neutrosophic subsets of $V';$
\item[$(ii)$] $V=\{(V_i,T_{V'}(V_i),I_{V'}(V_i),F_{V'}(V_i)):~T_{V'}(V_i),I_{V'}(V_i),F_{V'}(V_i)\geq0\},~(i=1,2,\ldots,n);$
\item[$(iii)$] $E=\{E_1,E_2,\ldots,E_{n'}\}$ a finite set of finite single valued Neutrosophic subsets of $V;$
\item[$(iv)$] $E=\{(E_{i'},T'_{V}(E_{i'}),I'_{V}(E_{i'}),F'_{V}(E_{i'})):~T'_{V}(E_{i'}),I'_{V}(E_{i'}),F'_{V}(E_{i'})\geq0\},~(i'=1,2,\ldots,n');$
\item[$(v)$] $V_i\neq\emptyset,~(i=1,2,\ldots,n);$
\item[$(vi)$] $E_{i'}\neq\emptyset,~(i'=1,2,\ldots,n');$
\item[$(vii)$] $\sum_{i}supp(V_i)=V,~(i=1,2,\ldots,n);$
\item[$(viii)$] $\sum_{i'}supp(E_{i'})=V,~(i'=1,2,\ldots,n');$   
\item[$(ix)$] and the following conditions hold:
$$T'_V(E_{i'})\leq\min[T_{V'}(V_i),T_{V'}(V_j)]_{V_i,V_j\in E_{i'}},$$
$$ I'_V(E_{i'})\leq\min[I_{V'}(V_i),I_{V'}(V_j)]_{V_i,V_j\in E_{i'}},$$
$$ \text{and}~F'_V(E_{i'})\leq\min[F_{V'}(V_i),F_{V'}(V_j)]_{V_i,V_j\in E_{i'}}$$
where $i'=1,2,\ldots,n'.$
\end{itemize}
Here the Neutrosophic SuperHyperEdges (NSHE) $E_{j'}$ and the Neutrosophic SuperHyperVertices (NSHV) $V_j$ are single valued Neutrosophic sets. $T_{V'}(V_i),I_{V'}(V_i),$ and $F_{V'}(V_i)$ denote the degree of truth-membership, the degree of indeterminacy-membership and the degree of falsity-membership the Neutrosophic SuperHyperVertex (NSHV) $V_i$ to the Neutrosophic SuperHyperVertex (NSHV) $V.$ $T'_{V}(E_{i'}),T'_{V}(E_{i'}),$ and $T'_{V}(E_{i'})$ denote the degree of truth-membership, the degree of indeterminacy-membership and the degree of falsity-membership of the Neutrosophic SuperHyperEdge (NSHE) $E_{i'}$ to the Neutrosophic SuperHyperEdge (NSHE) $E.$ Thus, the $ii'$th element of the \textbf{incidence matrix} of Neutrosophic SuperHyperGraph (NSHG) are of the form $(V_i,T'_{V}(E_{i'}),I'_{V}(E_{i'}),F'_{V}(E_{i'}))$, the sets V and E are crisp sets.
\end{definition}
\begin{definition}[Characterization of the Neutrosophic SuperHyperGraph (NSHG)](\textbf{Ref.}\cite{HG38},Definition 2.7,p.3).\\
 Assume a Neutrosophic SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$ The Neutrosophic SuperHyperEdges (NSHE) $E_{i'}$ and the Neutrosophic SuperHyperVertices (NSHV) $V_i$ of Neutrosophic SuperHyperGraph (NSHG) $S=(V,E)$ could be characterized as follow-up items.
\begin{itemize}
 \item[$(i)$] If $|V_i|=1,$ then $V_i$ is called \textbf{vertex};
\item[$(ii)$] if $|V_i|\geq1,$ then $V_i$ is called \textbf{SuperVertex};
\item[$(iii)$] if for all $V_i$s are incident in $E_{i'},$ $|V_i|=1,$ and $|E_{i'}|=2,$  then $E_{i'}$ is called \textbf{edge};
\item[$(iv)$] if for all $V_i$s are incident in $E_{i'},$ $|V_i|=1,$ and $|E_{i'}|\geq2,$  then $E_{i'}$ is called \textbf{HyperEdge};
\item[$(v)$] if there's a $V_i$ is incident in $E_{i'}$ such that $|V_i|\geq1,$ and $|E_{i'}|=2,$  then $E_{i'}$ is called \textbf{SuperEdge};
\item[$(vi)$] if there's a $V_i$ is incident in $E_{i'}$ such that $|V_i|\geq1,$ and $|E_{i'}|\geq2,$  then $E_{i'}$ is called \textbf{SuperHyperEdge}.
\end{itemize}
\end{definition}
If we choose different types of binary operations, then we could get hugely diverse types of general forms of Neutrosophic SuperHyperGraph (NSHG).
\begin{definition}[t-norm](\textbf{Ref.}\cite{HG38}, Definition 2.7, p.3).\\
 A binary operation $\otimes: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a \textbf{$t$-norm} if it satisfies the following for $x,y,z,w  \in [0, 1]$:
\begin{itemize}
\item[$(i)$] $1 \otimes x =x;$
\item[$(ii)$] $x \otimes y = y \otimes x;$
\item[$(iii)$] $x \otimes (y \otimes z) = (x \otimes y) \otimes z;$
\item[$(iv)$] If $ w \leq x$ and $y \leq z$ then $w \otimes y \leq x \otimes z.$
\end{itemize}
\end{definition}
\begin{definition}
The \textbf{degree of truth-membership}, \textbf{indeterminacy-membership} and \textbf{falsity-membership of the subset} $X\subset A$ of the single valued Neutrosophic set  $A = \{< x:T_A(x),I_A(x),F_A(x)>, x\in X\}$ (with respect to t-norm $T_{norm}$):$$T_A(X)=T_{norm}[T_A(v_i),T_A(v_j)]_{v_i,v_j\in X},$$
$$I_A(X)=T_{norm}[I_A(v_i),I_A(v_j)]_{v_i,v_j\in X},$$
$$ \text{and}~F_A(X)=T_{norm}[F_A(v_i),F_A(v_j)]_{v_i,v_j\in X}.$$
\end{definition}
\begin{definition}
The \textbf{support} of $X\subset A$ of the single valued Neutrosophic set  $A = \{< x:T_A(x),I_A(x),F_A(x)>, x\in X\}$:
$$supp(X)=\{x\in X:~T_A(x),I_A(x),F_A(x)> 0\}.$$
\end{definition}
\begin{definition}(General Forms of  Neutrosophic SuperHyperGraph (NSHG)).\\
Assume $V'$ is a given set. a \textbf{Neutrosophic SuperHyperGraph} (NSHG) $S$
is a pair $S=(V,E),$ where
\begin{itemize}
\item[$(i)$] $V=\{V_1,V_2,\ldots,V_n\}$ a finite set of finite single valued Neutrosophic subsets of $V';$
\item[$(ii)$] $V=\{(V_i,T_{V'}(V_i),I_{V'}(V_i),F_{V'}(V_i)):~T_{V'}(V_i),I_{V'}(V_i),F_{V'}(V_i)\geq0\},~(i=1,2,\ldots,n);$
\item[$(iii)$] $E=\{E_1,E_2,\ldots,E_{n'}\}$ a finite set of finite single valued Neutrosophic subsets of $V;$
\item[$(iv)$] $E=\{(E_{i'},T'_{V}(E_{i'}),I'_{V}(E_{i'}),F'_{V}(E_{i'})):~T'_{V}(E_{i'}),I'_{V}(E_{i'}),F'_{V}(E_{i'})\geq0\},~(i'=1,2,\ldots,n');$
\item[$(v)$] $V_i\neq\emptyset,~(i=1,2,\ldots,n);$
\item[$(vi)$] $E_{i'}\neq\emptyset,~(i'=1,2,\ldots,n');$
\item[$(vii)$] $\sum_{i}supp(V_i)=V,~(i=1,2,\ldots,n);$
\item[$(viii)$] $\sum_{i'}supp(E_{i'})=V,~(i'=1,2,\ldots,n').$   
\end{itemize}
Here the Neutrosophic SuperHyperEdges (NSHE) $E_{j'}$ and the Neutrosophic SuperHyperVertices (NSHV) $V_j$ are single valued Neutrosophic sets. $T_{V'}(V_i),I_{V'}(V_i),$ and $F_{V'}(V_i)$ denote the degree of truth-membership, the degree of indeterminacy-membership and the degree of falsity-membership the Neutrosophic SuperHyperVertex  (NSHV) $V_i$ to the Neutrosophic SuperHyperVertex (NSHV) $V.$ $T'_{V}(E_{i'}),T'_{V}(E_{i'}),$ and $T'_{V}(E_{i'})$ denote the degree of truth-membership, the degree of indeterminacy-membership and the degree of falsity-membership of the Neutrosophic SuperHyperEdge (NSHE) $E_{i'}$ to the Neutrosophic SuperHyperEdge (NSHE) $E.$ Thus, the $ii'$th element of the \textbf{incidence matrix} of Neutrosophic SuperHyperGraph (NSHG) are of the form $(V_i,T'_{V}(E_{i'}),I'_{V}(E_{i'}),F'_{V}(E_{i'}))$, the sets V and E are crisp sets.
\end{definition}


\begin{definition}[Characterization of the Neutrosophic SuperHyperGraph (NSHG)](\textbf{Ref.}\cite{HG38},Definition 2.7,p.3).\\
 Assume a Neutrosophic SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$ The Neutrosophic SuperHyperEdges (NSHE) $E_{i'}$ and the Neutrosophic SuperHyperVertices (NSHV) $V_i$ of Neutrosophic SuperHyperGraph (NSHG) $S=(V,E)$ could be characterized as follow-up items.
\begin{itemize}
 \item[$(i)$] If $|V_i|=1,$ then $V_i$ is called \textbf{vertex};
\item[$(ii)$] if $|V_i|\geq1,$ then $V_i$ is called \textbf{SuperVertex};
\item[$(iii)$] if for all $V_i$s are incident in $E_{i'},$ $|V_i|=1,$ and $|E_{i'}|=2,$  then $E_{i'}$ is called \textbf{edge};
\item[$(iv)$] if for all $V_i$s are incident in $E_{i'},$ $|V_i|=1,$ and $|E_{i'}|\geq2,$  then $E_{i'}$ is called \textbf{HyperEdge};
\item[$(v)$] if there's a $V_i$ is incident in $E_{i'}$ such that $|V_i|\geq1,$ and $|E_{i'}|=2,$  then $E_{i'}$ is called \textbf{SuperEdge};
\item[$(vi)$] if there's a $V_i$ is incident in $E_{i'}$ such that $|V_i|\geq1,$ and $|E_{i'}|\geq2,$  then $E_{i'}$ is called \textbf{SuperHyperEdge}.
\end{itemize}
\end{definition}
This SuperHyperModel is too messy and too dense. Thus there's a need to have some restrictions and conditions on SuperHyperGraph. The special case of this SuperHyperGraph makes the patterns and regularities.
\begin{definition}
 A graph is \textbf{SuperHyperUniform} if it's SuperHyperGraph and the number of elements of SuperHyperEdges are the same.
\end{definition}
To get more visions on SuperHyperUniform, the some SuperHyperClasses are introduced. It makes to have SuperHyperUniform more understandable.
\begin{definition}
 Assume a Neutrosophic SuperHyperGraph. There are some SuperHyperClasses as follows.
\begin{itemize}
 \item[(i).] It's \textbf{Neutrosophic SuperHyperPath } if it's only one SuperVertex as intersection amid two given SuperHyperEdges with two exceptions;
 \item[(ii).] it's \textbf{SuperHyperCycle} if it's only one SuperVertex as intersection amid two given SuperHyperEdges;
  \item[(iii).] it's \textbf{SuperHyperStar} it's only one SuperVertex as intersection amid all SuperHyperEdges;
   \item[(iv).] it's \textbf{SuperHyperBipartite} it's only one SuperVertex as intersection amid two given SuperHyperEdges and these SuperVertices, forming two separate sets, has no SuperHyperEdge in common;
    \item[(v).] it's \textbf{SuperHyperMultiPartite}  it's only one SuperVertex as intersection amid two given SuperHyperEdges and these SuperVertices, forming multi separate sets, has no SuperHyperEdge in common;
     \item[(vi).] it's \textbf{SuperHyperWheel} if it's only one SuperVertex as intersection amid two given SuperHyperEdges and one SuperVertex has one SuperHyperEdge with any common SuperVertex.

\end{itemize}
\end{definition}

\begin{definition}
 Let a pair $S=(V,E)$ be a Neutrosophic SuperHyperGraph (NSHG) $S.$ Then a sequence of Neutrosophic SuperHyperVertices (NSHV) and Neutrosophic SuperHyperEdges (NSHE)
 $$V_1,E_1,V_2,E_2,V_3,\ldots,V_{s-1},E_{s-1},V_s$$
  is called a \textbf{Neutrosophic  SuperHyperPath } (NSHP) from Neutrosophic SuperHyperVertex  (NSHV) $V_1$ to Neutrosophic SuperHyperVertex (NSHV) $V_s$ if either of following conditions hold:
  \begin{itemize}
 \item[$(i)$]  $V_i,V_{i+1}\in E_{i'};$
 \item[$(ii)$]   there's a vertex $v_i\in V_i$ such that $v_i,V_{i+1}\in E_{i'};$
  \item[$(iii)$]  there's a SuperVertex $V'_i \in V_i$ such that $V'_i,V_{i+1}\in E_{i'};$
   \item[$(iv)$]   there's a vertex $v_{i+1}\in V_{i+1}$ such that $V_i,v_{i+1}\in E_{i'};$
  \item[$(v)$]  there's a SuperVertex $V'_{i+1} \in V_{i+1}$ such that $V_i,V'_{i+1}\in E_{i'};$
   \item[$(vi)$]   there are a vertex $v_i\in V_i$ and a vertex $v_{i+1}\in V_{i+1}$ such that $v_i,v_{i+1}\in E_{i'};$
  \item[$(vii)$]   there are a vertex $v_i\in V_i$ and a SuperVertex $V'_{i+1} \in V_{i+1}$ such that $v_i,V'_{i+1}\in E_{i'};$  
     \item[$(viii)$]   there are a SuperVertex $V'_i\in V_i$ and a vertex $v_{i+1}\in V_{i+1}$ such that $V'_i,v_{i+1}\in E_{i'};$
  \item[$(ix)$]   there are a SuperVertex $V'_i\in V_i$ and a SuperVertex $V'_{i+1} \in V_{i+1}$ such that $V'_i,V'_{i+1}\in E_{i'}.$  
\end{itemize}
\end{definition}

\begin{definition}(Characterization of the Neutrosophic  SuperHyperPaths).\\
 Assume a Neutrosophic SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$ a Neutrosophic  SuperHyperPath  (NSHP) from Neutrosophic SuperHyperVertex (NSHV) $V_1$ to Neutrosophic SuperHyperVertex (NSHV) $V_s$ is sequence of Neutrosophic SuperHyperVertices (NSHV) and Neutrosophic SuperHyperEdges (NSHE)
 $$V_1,E_1,V_2,E_2,V_3,\ldots,V_{s-1},E_{s-1},V_s,$$
could be characterized as follow-up items.
\begin{itemize}
 \item[$(i)$] If for all $V_i,E_{j'},$ $|V_i|=1,~|E_{j'}|=2,$ then NSHP is called \textbf{path};
\item[$(ii)$] if for all $E_{j'},$ $|E_{j'}|=2,$  and there's $V_i,$ $|V_i|\geq1,$ then NSHP is called \textbf{SuperPath};
\item[$(iii)$] if for all $V_i,E_{j'},$ $|V_i|=1,~|E_{j'}|\geq2,$ then NSHP is called \textbf{HyperPath};
\item[$(iv)$] if there are $V_i,E_{j'},$ $|V_i|\geq1,|E_{j'}|\geq2,$ then NSHP is called \textbf{Neutrosophic SuperHyperPath }.
\end{itemize}
\end{definition}
\begin{definition}[Neutrosophic Strength of the Neutrosophic SuperHyperPaths](\textbf{Ref.}\cite{HG38},Definition 5.3,p.7).\\
 Assume a Neutrosophic SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$ A Neutrosophic SuperHyperPath (NSHP) from Neutrosophic SuperHyperVertex (NSHV) $V_1$ to Neutrosophic SuperHyperVertex (NSHV) $V_s$ is sequence of Neutrosophic SuperHyperVertices (NSHV) and Neutrosophic SuperHyperEdges (NSHE)
 $$V_1,E_1,V_2,E_2,V_3,\ldots,V_{s-1},E_{s-1},V_s,$$
have
\begin{itemize}
 \item[$(i)$]\textbf{Neutrosophic t-strength} $(\min\{T(V_i)\},m,n)_{i=1}^s$;
\item[$(ii)$] \textbf{Neutrosophic i-strength} $(m,\min\{I(V_i)\},n)_{i=1}^s;$
\item[$(iii)$] \textbf{Neutrosophic f-strength} $(m,n,\min\{F(V_i)\})_{i=1}^s;$
\item[$(iv)$] \textbf{Neutrosophic strength} $(\min\{T(V_i)\},\min\{I(V_i)\},\min\{F(V_i)\})_{i=1}^s.$
\end{itemize}
\end{definition}

\begin{definition}[Different Neutrosophic Types of Neutrosophic SuperHyperEdges (NSHE)](\textbf{Ref.}\cite{HG38},Definition 5.4,p.7).\\
 Assume a Neutrosophic SuperHyperGraph (NSHG) $S$
is a  pair $S=(V,E).$ Consider a Neutrosophic SuperHyperEdge (NSHE) $E=\{V_1,V_2,\ldots,V_s\}.$
Then $E$ is called
\begin{itemize}
  \item[$(ix)$] \textbf{Neutrosophic t-connective} if $T(E)\geq$ maximum number of Neutrosophic t-strength of SuperHyperPath (NSHP) from Neutrosophic SuperHyperVertex (NSHV) $V_i$ to Neutrosophic SuperHyperVertex (NSHV) $V_j$ where $1\leq i,j\leq s;$
\item[$(x)$] \textbf{Neutrosophic i-connective} if $I(E)\geq$ maximum number of Neutrosophic i-strength of SuperHyperPath (NSHP) from Neutrosophic SuperHyperVertex (NSHV) $V_i$ to Neutrosophic SuperHyperVertex (NSHV) $V_j$ where $1\leq i,j\leq s;$
\item[$(xi)$] \textbf{Neutrosophic f-connective} if $F(E)\geq$ maximum number of Neutrosophic f-strength of SuperHyperPath (NSHP) from Neutrosophic SuperHyperVertex (NSHV) $V_i$ to Neutrosophic SuperHyperVertex (NSHV) $V_j$ where $1\leq i,j\leq s;$
\item[$(xii)$] \textbf{Neutrosophic connective} if $(T(E),I(E),F(E))\geq$ maximum number of Neutrosophic strength of SuperHyperPath (NSHP) from Neutrosophic SuperHyperVertex (NSHV) $V_i$ to Neutrosophic SuperHyperVertex (NSHV) $V_j$ where $1\leq i,j\leq s.$
\end{itemize}
\end{definition}

 

\begin{definition}(Different Neutrosophic Types of Neutrosophic SuperHyperList-Coloring).\\
 Assume a Neutrosophic SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider a Neutrosophic SuperHyperSet $V'=\{V_1,V_2,\ldots,V_s\}$ and $E'=\{E_1,E_2,\ldots,E_z\}.$ Then either $V'$ or $E'$ is called
\begin{itemize}
  \item[$(i)$] \textbf{Neutrosophic e-SuperHyperList-Coloring} if the following expression is called \textbf{Neutrosophic e-SuperHyperList-Coloring criteria} holds
  \begin{eqnarray*}
  &&
\forall E\in E_{NSHG}, E\sim i,~i\in \Bbb N
\\&&
\forall E_a\in E_{NSHG}, \exists E_b\in E':
\\&&
 E_a\sim i,E_b\sim j,~i\neq j~i,j\in \Bbb N;
\end{eqnarray*}

\item[$(ii)$] \textbf{Neutrosophic re-SuperHyperList-Coloring} if the following expression is called \textbf{Neutrosophic re-SuperHyperList-Coloring criteria} holds
  \begin{eqnarray*}
  &&
\forall E\in E_{NSHG}, E\sim i,~i\in \Bbb N
\\&&
\forall E_a\in E_{NSHG}, \exists E_b\in E':
\\&&
 E_a\sim i,E_b\sim j,~i\neq j~i,j\in \Bbb N;
\end{eqnarray*}

and $|E_i|_{\text{NEUTROSOPIC CARDINALITY}}=|E_j|_{\text{NEUTROSOPIC CARDINALITY}};$
 \item[$(iii)$] \textbf{Neutrosophic v-SuperHyperList-Coloring} if the following expression is called \textbf{Neutrosophic v-SuperHyperList-Coloring criteria} holds
  \begin{eqnarray*}
  &&
\forall V\in V_{NSHG}, V\sim i,~i\in \Bbb N
\\&&
\forall V_a\in V_{NSHG}, \exists V_b\in V':
\\&&
 V_a\sim i,V_j\sim j,~i\neq j~i,j\in \Bbb N;
\end{eqnarray*}

\item[$(iv)$]  \textbf{Neutrosophic rv-SuperHyperList-Coloring} f the following expression is called \textbf{Neutrosophic v-SuperHyperList-Coloring criteria} holds
  \begin{eqnarray*}
  &&
\forall V\in V_{NSHG}, V\sim i,~i\in \Bbb N
\\&&
\forall V_a\in V_{NSHG}, \exists V_b\in V':
\\&&
 V_a\sim i,V_j\sim j,~i\neq j~i,j\in \Bbb N;
\end{eqnarray*} and $|V_i|_{\text{NEUTROSOPIC CARDINALITY}}=|V_j|_{\text{NEUTROSOPIC CARDINALITY}};$
\item[$(v)$] \textbf{Neutrosophic SuperHyperList-Coloring} if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring.
\end{itemize}
\end{definition}


\begin{definition}((Neutrosophic) SuperHyperList-Coloring).\\
 Assume a Neutrosophic SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$ Consider a Neutrosophic SuperHyperEdge (NSHE) $E=\{V_1,V_2,\ldots,V_s\}.$
Then $E$ is called
\begin{itemize}
 \item[$(i)$]
an \textbf{Extreme SuperHyperList-Coloring} if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperEdges in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperList-Coloring;
 \item[$(ii)$]
a \textbf{Neutrosophic SuperHyperList-Coloring} if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for a  Neutrosophic SuperHyperGraph $NSHG:(V,E)$ is the maximum Neutrosophic cardinality of the Neutrosophic SuperHyperEdges of a Neutrosophic SuperHyperSet $S$ of high Neutrosophic cardinality  consecutive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form the Neutrosophic SuperHyperList-Coloring;
 \item[$(iii)$]
an \textbf{Extreme SuperHyperList-Coloring SuperHyperPolynomial} if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperList-Coloring; and the Extreme power is corresponded to its Extreme coefficient;
 \item[$(iv)$]
a \textbf{Neutrosophic SuperHyperList-Coloring SuperHyperPolynomial} if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for a Neutrosophic SuperHyperGraph $NSHG:(V,E)$ is the Neutrosophic SuperHyperPolynomial contains the Neutrosophic coefficients defined as the Neutrosophic number of the maximum Neutrosophic cardinality of the Neutrosophic SuperHyperEdges of a Neutrosophic SuperHyperSet $S$ of high Neutrosophic cardinality consecutive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form the Neutrosophic SuperHyperList-Coloring; and the Neutrosophic power is corresponded to its Neutrosophic coefficient;
\item[$(v)$]
an \textbf{Extreme V-SuperHyperList-Coloring} if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperVertices in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperList-Coloring;
 \item[$(vi)$]
a \textbf{Neutrosophic V-SuperHyperList-Coloring} if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for a Neutrosophic SuperHyperGraph $NSHG:(V,E)$ is the maximum Neutrosophic cardinality of the Neutrosophic SuperHyperVertices of a Neutrosophic SuperHyperSet $S$ of high Neutrosophic cardinality consecutive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form the Neutrosophic SuperHyperList-Coloring;
 \item[$(vii)$]
an \textbf{Extreme V-SuperHyperList-Coloring SuperHyperPolynomial} if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperList-Coloring; and the Extreme power is corresponded to its Extreme coefficient;
 \item[$(viii)$]
a \textbf{Neutrosophic SuperHyperList-Coloring SuperHyperPolynomial} if it's either of Neutrosophic e-SuperHyperList-Coloring, Neutrosophic re-SuperHyperList-Coloring, Neutrosophic v-SuperHyperList-Coloring, and Neutrosophic rv-SuperHyperList-Coloring and $\mathcal{C}(NSHG)$ for a Neutrosophic SuperHyperGraph $NSHG:(V,E)$ is  the Neutrosophic SuperHyperPolynomial contains the Neutrosophic coefficients defined as the Neutrosophic number of the maximum Neutrosophic cardinality of the Neutrosophic SuperHyperVertices of a Neutrosophic SuperHyperSet $S$ of high Neutrosophic cardinality consecutive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form the Neutrosophic SuperHyperList-Coloring; and the Neutrosophic power is corresponded to its Neutrosophic coefficient.
\end{itemize}
\end{definition}

\begin{definition}((Extreme/Neutrosophic)$\delta-$SuperHyperList-Coloring).\\
 Assume a Neutrosophic SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$  Then
\begin{itemize}
 \item[$(i)$] an \textbf{$\delta-$SuperHyperList-Coloring} is a Neutrosophic kind of Neutrosophic SuperHyperList-Coloring such that either of the following expressions hold for the Neutrosophic cardinalities of  SuperHyperNeighbors of $s\in S:$
\begin{eqnarray*}
&&|S\cap N(s)| > |S\cap (V\setminus N(s))|+\delta; \label{136EQN1}
 \\&& |S\cap N(s)| < |S\cap (V\setminus N(s))|+\delta. \label{136EQN2}
\end{eqnarray*}
The Expression \eqref{136EQN1}, holds if $S$ is an \textbf{$\delta-$SuperHyperOffensive}. And the Expression \eqref{136EQN2}, holds if $S$ is an \textbf{$\delta-$SuperHyperDefensive};
 \item[$(ii)$] a \textbf{Neutrosophic $\delta-$SuperHyperList-Coloring} is a Neutrosophic kind of Neutrosophic SuperHyperList-Coloring such that either of the following Neutrosophic expressions hold for the Neutrosophic cardinalities of SuperHyperNeighbors of $s\in S:$
\begin{eqnarray*}
&&|S\cap N(s)|_{Neutrosophic} > |S\cap (V\setminus N(s))|_{Neutrosophic}+\delta; \label{136EQN3}
 \\&& |S\cap N(s)|_{Neutrosophic} < |S\cap (V\setminus N(s))|_{Neutrosophic}+\delta. \label{136EQN4}
\end{eqnarray*}
The Expression \eqref{136EQN3}, holds if $S$ is a \textbf{Neutrosophic $\delta-$SuperHyperOffensive}. And the Expression \eqref{136EQN4}, holds if $S$ is a \textbf{Neutrosophic $\delta-$SuperHyperDefensive}.
\end{itemize}
\end{definition}
For the sake of having a Neutrosophic SuperHyperList-Coloring, there's a need to ``\textbf{redefine}'' the notion of ``Neutrosophic SuperHyperGraph''. The SuperHyperVertices and the SuperHyperEdges are assigned by the labels from the letters of the alphabets. In this procedure, there's the usage of the position of labels to assign to the values.
\begin{definition}\label{136DEF1}
 Assume a Neutrosophic SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$  It's redefined \textbf{Neutrosophic SuperHyperGraph} if the Table \eqref{136TBL3} holds.
 \begin{table}
\centering
\caption{The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Neutrosophic SuperHyperGraph Mentioned in the Definition \eqref{136DEF1}}
\begin{tabular}[t]{c|c}
\hline
The Values of The Vertices & The Number of Position in Alphabet\\
\hline
The Values of The SuperVertices&The maximum Values of Its Vertices\\
\hline
The Values of The Edges&The maximum Values of Its Vertices\\
\hline
The Values of The HyperEdges&The maximum Values of Its Vertices\\
\hline
The Values of The SuperHyperEdges&The maximum Values of Its Endpoints \\
\hline
\end{tabular}
\label{136TBL3}
\end{table}
\end{definition}
It's useful to define a ``Neutrosophic'' version of SuperHyperClasses. Since there's more ways to get Neutrosophic type-results to make a Neutrosophic more understandable.
\begin{definition}\label{136DEF2}
 Assume a Neutrosophic SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$ There are some \textbf{Neutrosophic SuperHyperClasses} if the Table \eqref{136TBL4} holds. Thus  Neutrosophic SuperHyperPath ,  SuperHyperList-Coloring, SuperHyperStar, SuperHyperBipartite, SuperHyperMultiPartite, and   SuperHyperWheel, are
 \textbf{Neutrosophic SuperHyperPath},  \textbf{Neutrosophic SuperHyperCycle}, \textbf{Neutrosophic SuperHyperStar}, \textbf{Neutrosophic SuperHyperBipartite}, \textbf{Neutrosophic SuperHyperMultiPartite}, and \textbf{Neutrosophic SuperHyperWheel} if the Table \eqref{136TBL4} holds.
 \begin{table}
\centering
\caption{The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Neutrosophic SuperHyperGraph, Mentioned in the Definition \eqref{136DEF2}}
\begin{tabular}[t]{c|c}
\hline
The Values of The Vertices & The Number of Position in Alphabet\\
\hline
The Values of The SuperVertices&The maximum Values of Its Vertices\\
\hline
The Values of The Edges&The maximum Values of Its Vertices\\
\hline
The Values of The HyperEdges&The maximum Values of Its Vertices\\
\hline
The Values of The SuperHyperEdges&The maximum Values of Its Endpoints \\
\hline
\end{tabular}
\label{136TBL4}
\end{table}
\end{definition}
It's useful to define a ``Neutrosophic'' version of a Neutrosophic SuperHyperList-Coloring. Since there's more ways to get type-results to make a Neutrosophic SuperHyperList-Coloring more Neutrosophicly understandable.
\\
For the sake of having a Neutrosophic SuperHyperList-Coloring, there's a need to ``\textbf{redefine}'' the Neutrosophic notion of ``Neutrosophic SuperHyperList-Coloring''. The SuperHyperVertices and the SuperHyperEdges are assigned by the labels from the letters of the alphabets. In this procedure, there's the usage of the position of labels to assign to the values.
\begin{definition}\label{136DEF1}
 Assume a SuperHyperList-Coloring. It's redefined a \textbf{Neutrosophic SuperHyperList-Coloring} if the Table \eqref{136TBL1} holds.  \begin{table}
\centering
\caption{The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Neutrosophic SuperHyperGraph Mentioned in the Definition \eqref{136DEF1}}
\begin{tabular}[t]{c|c}
\hline
The Values of The Vertices & The Number of Position in Alphabet\\
\hline
The Values of The SuperVertices&The maximum Values of Its Vertices\\
\hline
The Values of The Edges&The maximum Values of Its Vertices\\
\hline
The Values of The HyperEdges&The maximum Values of Its Vertices\\
\hline
The Values of The SuperHyperEdges&The maximum Values of Its Endpoints \\
\hline
\end{tabular}
\label{136TBL1}
\end{table}
\end{definition}
\section{
Extreme SuperHyperList-Coloring But As The Extensions Excerpt From Dense And Super Forms}
\begin{definition}(Extreme event).\\
  Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Any Extreme k-subset of $A$ of $V$ is called \textbf{Extreme k-event} and if $k=2,$ then Extreme subset of $A$ of $V$ is called \textbf{Extreme event}. The following expression is called \textbf{Extreme probability} of $A.$
\begin{eqnarray}
 E(A)=\sum_{a\in A}E(a).
\end{eqnarray}
\end{definition}
\begin{definition}(Extreme Independent).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. $s$ Extreme k-events $A_i,~i\in I$ is called \textbf{Extreme s-independent} if the following expression is called \textbf{Extreme s-independent criteria}
\begin{eqnarray*}
 E(\cap_{i\in I}A_i)=\prod_{i\in I}P(A_i).
\end{eqnarray*}
And if $s=2,$ then Extreme k-events of $A$ and $B$ is called \textbf{Extreme independent}. The following expression is called \textbf{Extreme independent criteria}
\begin{eqnarray}
 E(A\cap B)=P(A)P(B).
\end{eqnarray}
\end{definition}
\begin{definition}(Extreme Variable).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Any k-function List-Coloring like $E$ is called \textbf{Extreme k-Variable}. If $k=2$, then any 2-function List-Coloring like $E$ is called \textbf{Extreme Variable}.
\end{definition}
The notion of independent on Extreme Variable is likewise.
\begin{definition}(Extreme Expectation).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. an Extreme k-Variable $E$ has a number is called \textbf{Extreme Expectation} if the following expression is called \textbf{Extreme Expectation criteria}
\begin{eqnarray*}
 Ex(E)=\sum_{\alpha \in V}E(\alpha)P(\alpha).
\end{eqnarray*}
\end{definition}
\begin{definition}(Extreme Crossing).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. an Extreme number is called \textbf{Extreme Crossing} if the following expression is called \textbf{Extreme Crossing criteria}
\begin{eqnarray*}
 Cr(S)=\min\{\text{Number of Crossing in a Plane Embedding of } S\}.
\end{eqnarray*}
\end{definition}
\begin{lemma}
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Let $m$ and $n$ propose special List-Coloring. Then with $m\geq 4n,$

\end{lemma}
\begin{proof}
 Consider a planar embedding $G$ of $G$ with $cr(G)$ crossings. Let $S$ be an Extreme  random k-subset of $V$ obtained by choosing each SuperHyperVertex of $G$ Extreme independently with probability List-Coloring $p := 4n/m,$ and set $H:=G[S]$ and $H:=G[S].$
 \\
Define random variables $X, Y, Z$ on $V$ as follows: $X$ is the Extreme number of SuperHyperVertices, $Y$ the Extreme number of SuperHyperEdges, and $Z$ the Extreme number of crossings of $H.$ The trivial bound noted above, when applied to $H,$ yields the inequality $Z ≥ cr(H) ≥ Y -3X.$ By linearity of Extreme Expectation,
$$E(Z) ≥ E(Y )-3E(X).$$
Now $E(X) = pn,~E(Y ) = p^2m$ (each SuperHyperEdge having some SuperHyperEnds) and $E(Z) = p^4cr(G)$ (each crossing being defined by some SuperHyperVertices). Hence
$$p^4cr(G) ≥ p^2m-3pn.$$
Dividing both sides by $p^4,$ we have:
 \begin{eqnarray*}
cr(G)\geq \frac{pm-3n}{p^3}=\frac{n}{{(4n/m)}^3}=\frac{1}{64}{m^3}{n^2}.
\end{eqnarray*}
\end{proof}
\begin{theorem}
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Let $P$ be a SuperHyperSet of $n$ points in the plane, and let $l$ be the Extreme number of SuperHyperLines in the plane passing through at least $k+1$ of these points, where $1 \leq k \leq 2 \sqrt{2n}.$ Then $l<32n^2/k^3.$
\end{theorem}
\begin{proof}
Form an Extreme SuperHyperGraph $G$ with SuperHyperVertex SuperHyperSet $P$ whose SuperHyperEdge are the segments between
consecutive points on the SuperHyperLines which pass through at least $k+1$ points of $P.$ This
Extreme SuperHyperGraph has at least $kl$ SuperHyperEdges and Extreme crossing at most 􏰈$l$ choose two. Thus either $kl < 4n,$ in which case $l < 4n/k \leq32n^2/k^3,$ or $l^2/2 > \text{l choose 2} \geq cr(G) \geq {(kl)}^3/64n^2$ by the Extreme Crossing Lemma, and again $l < 32n^2/k^3.
\end{proof}

\begin{theorem}
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Let $P$ be a SuperHyperSet of $n$ points in the plane, and let $k$ be the number of pairs of points of $P$ at unit SuperHyperDistance. Then $k < 5n^{4/3}.$
\end{theorem}
\begin{proof}
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Draw a SuperHyperUnit SuperHyperCircle around each SuperHyperPoint of $P.$ Let $n_i$ be the Extreme number of these SuperHyperCircles passing through exactly $i$ points of $P.$ Then  $\sum{i=0}^{􏰄n-1}n_i = n$ and $k = \frac{1}{2}􏰄\sum{i=0}^{􏰄n-1}in_i.$ Now form an Extreme SuperHyperGraph $H$ with SuperHyperVertex SuperHyperSet $P$ whose SuperHyperEdges are the SuperHyperArcs between consecutive SuperHyperPoints on the SuperHyperCircles that pass through at least three SuperHyperPoints
of $P.$ Then
 \begin{eqnarray*}
e(H)=\sum_{i=3}^{n-1}in_i=2k-n_1-2n_2\geq2k-2n.
\end{eqnarray*}
Some SuperHyperPairs of SuperHyperVertices of $H$ might be joined by some parallel SuperHyperEdges. Delete from $H$ one of each SuperHyperPair of parallel SuperHyperEdges, so as to obtain a simple Extreme SuperHyperGraph $G$ with $e(G) ≥ k-n.$ Now $cr(G) ≤ n(n-1)$ because $G$ is formed from at most n SuperHyperCircles, and any two SuperHyperCircles cross at most twice. Thus either $e(G) < 4n,$ in which case $k < 5n < 5n^{4/3},$ or $n^2 > n(n-1) ≥ cr(G) ≥ {(k-n)}^3/64n^2$ by the Extreme Crossing Lemma, and $k<4n^{4/3} +n<5n^{4/3}.$
\end{proof}
\begin{proposition}
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Let $X$ be a nonnegative Extreme Variable and t a positive real number. Then
  \begin{eqnarray*}
P(X\geq t) \leq \frac{E(X)}{t}.
\end{eqnarray*}
\end{proposition}
 \begin{proof}
   \begin{eqnarray*}
&& E(X)=\sum \{X(a)P(a):a\in V\} \geq \sum\{X(a)P(a):a\in V,X(a)\geq t\} 􏰅􏰅
\\&&
\sum\{tP(a):a\in V,X(a)\geq t\} 􏰅􏰅=t\sum\{P(a):a\in V,X(a)\geq t\}
\\&&
tP(X\geq t).
\end{eqnarray*}
Dividing the first and last members by $t$ yields the asserted inequality.
\end{proof}
 \begin{corollary}
  Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Let $X_n$ be a nonnegative integer-valued variable in a prob- ability List-Coloring $(V_n,E_n), n\geq1.$ If $E(X_n)\rightarrow0$ as $n\rightarrow \infty,$ then $P(X_n =0)\rightarrow1$ as $n \rightarrow \infty.$
\end{corollary}
 \begin{proof}
\end{proof}
 \begin{theorem}
  Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring.
 A special SuperHyperGraph in $G_{n,p}$ almost surely has stability number at most $\lceil2p^{-1} \log n\rceil.$
\end{theorem}
 \begin{proof}
   Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring.
 A special SuperHyperGraph in $G_{n,p}$ is up. Let $G\in \mathcal{G}_{n,p}$  and let $S$ be a given SuperHyperSet of $k+1$ SuperHyperVertices of $G,$ where $k\in \Bbb N.$ The probability that $S$ is a stable SuperHyperSet of $G$ is $(1-p)^{(k+1) \text{choose} 2},$ this being the probability that none of the $(k+1) \text{choose} 2$ pairs of SuperHyperVertices of $S$ is a SuperHyperEdge of the Extreme SuperHyperGraph $G.$
 \\
Let $A_S$ denote the event that $S$ is a stable SuperHyperSet of $G,$ and let $X_S$ denote the indicator Extreme Variable for this Extreme Event. By equation, we have
  \begin{eqnarray*}
E(X_S) = P(X_S = 1) = P(A_S ) = (1-p)^{(k+1) \text{choose} 2}.
\end{eqnarray*}
Let $X$ be the number of stable SuperHyperSets of cardinality $k + 1$ in $G.$ Then 􏰄
  \begin{eqnarray*}
X = \sum\{X_S : S \subseteq V, |S| = k + 1\}
\end{eqnarray*}
and so, by those,
􏰄􏰉􏰊  \begin{eqnarray*}
E(X)= \sum\{E(X_S): S\subseteq V, |S|=k+1}= (\text{n choose k+1})  (1-p)^{(k+1) \text{choose} 2}.
\end{eqnarray*}
We bound the right-hand side by invoking two elementary inequalities:
􏰄􏰉􏰊  \begin{eqnarray*}
(\text{n choose k+1})\leq \frac{n^{k+1}}{(k+1)!} \text{and} 1-p≤e^{-p}.
\end{eqnarray*}
This yields the following upper bound on $E(X).$  
􏰄􏰉􏰊  \begin{eqnarray*}
E(X)\leq\frac{n^{k+1}e^{-p)(k+1) \text{choose} 2}}{(k+1)!}=\frac{􏰇ne^{-pk/2}^{􏰈k+1}}{(k+1)!}
\end{eqnarray*}
Suppose now that $k = \lceil2p^{-1} \log n\rceil.$ Then $k ≥ 2p^{-1} \log n,$ so $ne^{-pk/2} \leq 1.$   Because $k$ grows at least as fast as the logarithm of $n,$  implies that $E(X) \rightarrow 0$ as $n \rightarrow \infty.$ Because $X$ is integer-valued and nonnegative, we deduce from Corollary that $P (X = 0) \rightarrow 1$ as $n \rightarrow \infty.$ Consequently, an Extreme SuperHyperGraph in $\mathcal{G}_{n,p}$ almost surely has stability number at most $k.$
\end{proof}
\begin{definition}(Extreme Variance).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. an Extreme k-Variable $E$ has a number is called \textbf{Extreme Variance} if the following expression is called \textbf{Extreme Variance criteria}
\begin{eqnarray*}
 Vx(E)=Ex({(X-Ex(X))}^2).
\end{eqnarray*}
\end{definition}
 \begin{theorem}
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Let $X$ be an Extreme Variable and let $t$ be a positive real number. Then
 \begin{eqnarray*}
E(|X-Ex(X)|\geq t)\leq \frac{V(X)}{t^2}.
\end{eqnarray*}  
\end{theorem}
 \begin{proof}
   Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Let $X$ be an Extreme Variable and let $t$ be a positive real number. Then
 \begin{eqnarray*}
E(|X-Ex(X)|\geq t)=E{((X-Ex(X))}^2 \geq t^2)\leq \frac{Ex({(X-Ex(X))}^2)}{t^2}=\frac{V(X)}{t^2}. 􏱫
\end{eqnarray*}  

\end{proof}
\begin{corollary}
   Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Let $X_n$ be an Extreme Variable in a probability List-Coloring (V_n , E_n ), n \geq 1.$ If $Ex(X_n)\neq 0$ and $V(X_n) << E^2(X_n),$ then
    \begin{eqnarray*}
E(X_n=0)\rightarrow 0~\text{as}~n\rightarrow \infty
\end{eqnarray*}
\end{corollary}
 \begin{proof}
   Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Set $X := X_n$ and $t := |Ex(X_n)|$ in Chebyshev’s Inequality, and observe that $E (X_n = 0) \leq E (|X_n - Ex(X_n)| \geq |Ex(X_n)|)$ because $|X_n - Ex(X_n)| = |Ex(X_n)|$ when $X_n = 0.$
\end{proof}
\begin{theorem}
   Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Let $G \in \mathcal{G}_{n,1/2}.$ For $0 \leq k \leq n,$ set $f(k) := \text{(n choose k)}􏰇􏰈2^{-\text{(k choose 2)}}$ and let $k^{*}$ be the least value of $k$ for which $f(k)$ is less than one. Then almost surely $\alpha(G)$ takes one of the three values $k^{*}-2,k^{*}-1,k^{*}.$
\end{theorem}
 \begin{proof}
   Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. As in the proof of related Theorem, the result is straightforward.
\end{proof}

\begin{corollary}
   Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Let $G \in \mathcal{G}_{n,1/2}$ and let $f$ and $k^{*}$ be as defined in previous Theorem. Then either:
   \begin{itemize}
 \item[$(i).$] $f(k^{*}) << 1,$ in which case almost surely $\alpha(G)$ is equal to either  $k^{*}-2$ or  $k^{*}-1$, or
 \item[$(ii).$] $f(k^{*}-1) >> 1,$ in which case almost surely $\alpha(G)$  is equal to either $k^{*}-1$ or $k^{*}.$
\end{itemize}
\end{corollary}
 \begin{proof}
   Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. The latter is straightforward.
\end{proof}
\begin{definition}(Extreme Threshold).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Let $P$ be a  monotone property of SuperHyperGraphs (one which is preserved when SuperHyperEdges are added). Then a \textbf{Extreme Threshold} for $P$ is a function $f(n)$ such that:
 \begin{itemize}
 \item[$(i).$]  if $p << f(n),$ then $G \in \mathcal{G}_{n,p}$ almost surely does not have $P,$
 \item[$(ii).$]  if $p >> f(n),$ then $G \in \mathcal{G}_{n,p}$ almost surely has $P.$
\end{itemize}
\end{definition}
\begin{definition}(Extreme Balanced).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Let $F$ be a fixed Extreme SuperHyperGraph. Then there is a threshold function for the property of containing a copy of $F$ as an Extreme SubSuperHyperGraph is called \textbf{Extreme Balanced}.
\end{definition}
 \begin{theorem}
   Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. Let $F$ be a nonempty balanced Extreme SubSuperHyperGraph with $k$ SuperHyperVertices and $l$ SuperHyperEdges. Then $n^{-k/l}$ is a threshold function for the property of containing $F$ as an Extreme SubSuperHyperGraph.
\end{theorem}
 \begin{proof}
   Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider $S=(V,E)$ is a probability List-Coloring. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM1}
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E)$ in the mentioned Extreme Figures in every Extreme items.
 \begin{itemize}
 \item On the Figure \eqref{136NSHG1}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.  $E_1$ and $E_3$ are some empty Extreme  
 SuperHyperEdges but $E_2$ is a loop Extreme SuperHyperEdge and $E_4$ is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely, $E_4.$ The Extreme SuperHyperVertex, $V_3$ is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex, $V_3,$  \underline{\textbf{is}} excluded in every given Extreme SuperHyperList-Coloring.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}=4z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}=\{V_i\}_{i\neq3}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}=3z^3.
\end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG1.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG1}
\end{figure}
 \item On the Figure \eqref{136NSHG2}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.  $E_1,E_2$ and $E_3$ are some empty Extreme SuperHyperEdges but $E_4$ is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely, $E_4.$ The Extreme SuperHyperVertex, $V_3$ is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex, $V_3,$  \underline{\textbf{is}} excluded in every given Extreme SuperHyperList-Coloring.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}=4z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}=\{V_i\}_{i\neq3}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}=3z^3.
\end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG2.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG2}
 \end{figure}
  \item On the Figure \eqref{136NSHG3}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}=4z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}=\{V_i\}_{i=1}^3.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}=z^3.
\end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG3.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG3}
 \end{figure}
 \item On the Figure \eqref{136NSHG4}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
  \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
   \\&&
  =\{E_1,E_4,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}=2z.
   \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}=\{V_1,V_2,V_3,N,F\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
   \\&&
  =(\text{Seven Choose Four})z^5.
\end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG4.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG4}
 \end{figure}
  \item On the Figure \eqref{136NSHG5}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
       \\&&    
          =\{E_i\}_{i=1}^4.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
 \\&&
 =z^4.
 \\&&
     \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
      \\&&  
     =\{V_i\}_{i=1}^5.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
  \\&&
 =4z^5.
\end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG5.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG5}
 \end{figure}
  \item On the Figure \eqref{136NSHG6}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
  \\&&   =\{E_1,E_2\}.
           \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
  \\&& =az^2.
    \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
  \\&&
  =\{V_1,V_2\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
  \\&& =bz^2.
\end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG6.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG6}
 \end{figure}
 \item On the Figure \eqref{136NSHG7},  the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}=
           \\&&
           \{E_i,E_{13},E_{14},E_{16}\}_{i=3}^7.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
 \\&&
=2z^8.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}=
    \\&&
           \{V_i,V_{13}\}_{i=4}^7.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
 \\&&
=3z^5.
\end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG7.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG7}
 \end{figure}
 \item On the Figure \eqref{136NSHG8}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}=
           \\&&
           \{E_1,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
 \\&&
=3z^2.
\\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}=
    \\&&
           \{V_{13},V_i\}_{i=4}^7.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
 \\&&
=3z^5.
\end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG8.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG8}
 \end{figure}
 \item On the Figure \eqref{136NSHG9}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
  \\&&   =\{E_1,E_2\}.
           \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
  \\&& =az^2.
    \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
  \\&&   =\{V_i,V_{22}\}_{i=11}^{20}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
  \\&& =2z^{11}.
    \end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG9.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG9}
 \end{figure}
 \item On the Figure \eqref{136NSHG10}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}=
           \\&&
           \{E_1,E_4,E_5,E_6\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
  \\&&
 =3z^4.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}=
    \\&&
         =\{V_i,V_{13}\}_{i=1}^7.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
 \\&&
=3z^5.
\end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG10.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG10}
 \end{figure}
  \item On the Figure \eqref{136NSHG11}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}=
     \\&&      
          \{E_2,E_3,E_4,E_7\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
 \\&&   
 =3z^4.
  \\&&
    \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}=\{V_1,V_2,V_3\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
 \\&&
 =2z^3.
\end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG11.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG11}
 \end{figure}
 \item On the Figure \eqref{136NSHG12}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}=\{E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
   \\&&
 =5z.
 \\&&
    \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
  \\&&
   =\{V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}=
  \\&&
=5z.
\end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG12.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG12}
 \end{figure}
  \item On the Figure \eqref{136NSHG13}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}=
     \\&&      
          \{E_1,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
 \\&&   
 =5z^2.
  \\&&
    \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
   \\&&  
    =\{V_1,V_2,V_3,V_7,V_8\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
 \\&&
 =z^5.
 \end{eqnarray*}
  \begin{figure}
 \includegraphics[width=100mm]{136NSHG13.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG13}
 \end{figure}
  \item On the Figure \eqref{136NSHG14}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
  \\&&         
          =\{E_2,E_3,E_4,E_7\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
  \\&&
 =6z^4.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}=\{V_1,V_2,V_3\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}=
2z^3.
 \end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG14.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG14}
 \end{figure}
  \item On the Figure \eqref{136NSHG15}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
   \\&&        
          =\{E_1,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}=z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
   \\&&        
          =\{V_1,V_2\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
  =2z^2.
  \end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG15.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG15}
 \end{figure}
  \item On the Figure \eqref{136NSHG16}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
    \\&&       
          =\{E_1,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}=4z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
    \\&&
   =\{V_i\}_{i=8}^{17}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
    \\&&
  =z^{10}.
  \end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG16.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG16}
 \end{figure}
  \item On the Figure \eqref{136NSHG17}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
    \\&&       
          =\{E_1,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}=4z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
    \\&&
   =\{V_i\}_{i=8}^{17}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
    \\&&
  =z^{10}.
  \end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG17.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG17}
 \end{figure}
  \item On the Figure \eqref{136NSHG18}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
    \\&&       
          =\{E_1,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}=4z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
    \\&&
   =\{V_i\}_{i=8}^{17}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
    \\&&
  =z^{10}.
  \end{eqnarray*}
   \begin{figure}
 \includegraphics[width=100mm]{136NSHG18.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG18}
 \end{figure}
  \item On the Figure \eqref{136NSHG19}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
    \\&&       
          =\{E_1,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}=11z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
    \\&&
   =\{V_i\}_{V_i\in E_2}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
    \\&&
  =2z^{7}.
  \end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG19.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG19}
 \end{figure}
  \item On the Figure \eqref{136NSHG20}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
     \\&&      
          =\{E_i\}_{i=1}^{10}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
  \\&&
 =z^{10}.
 \\&&
    \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
     \\&&
    =\{V_i\}_{V_i\in E_6}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
  \\&&
=10z^{|E_6|}.
 \end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{136NSHG20.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{136NSHG20}
 \end{figure}
 \item On the Figure \eqref{95NHG1}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
     \\&&      
          =\{E_1,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
  \\&&
 =z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
     \\&&
    =\{R,M_6,L_6,F,P,J,M,V_1,V_2,V_3\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
  \\&&
 =z^{10}.
 \end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{95NHG1.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{95NHG1}
 \end{figure}
 \item On the Figure \eqref{95NHG2}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperList-Coloring, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
     \\&&      
          =\{E_1,E_2,E_3\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
  \\&&
=4z^3.
 \\&&
    \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
     \\&&
   =\{M_6,L_6,F,V_3,V_2,H_6,O_6,E_6,C_6,Z_5,W_5,V_{10}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
  \\&&
=z^{12}.
  \end{eqnarray*}
 \begin{figure}
 \includegraphics[width=100mm]{95NHG2.png}  
   \caption{The Extreme SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM1} }
 \label{95NHG2}
 \end{figure}
\end{itemize}
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperGraph $ESHG:(V,E).$ The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-List-Coloring if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme  SuperHyperNeighbors with no Extreme exception at all minus  all Extreme SuperHypeNeighbors to any amount of them.
\end{proposition}
\begin{proposition}
Assume a connected non-obvious Extreme  SuperHyperGraph $ESHG:(V,E).$ There's only one  Extreme SuperHyperEdge $E\in E_{ESHG:(V,E)}$ has only the maximum possibilities of the distinct interior Extreme SuperHyperVertices inside of any given Extreme quasi-R-List-Coloring minus all  Extreme SuperHypeNeighbor to some of them but not all of them. In other words, there's only an unique Extreme SuperHyperEdge $E\in E_{ESHG:(V,E)}$ has only two distinct Extreme SuperHyperVertices in an  Extreme quasi-R-List-Coloring, minus all  Extreme SuperHypeNeighbor to some of them but not all of them.
\end{proposition}
\begin{proposition}
Assume a connected Extreme  SuperHyperGraph $ESHG:(V,E).$ If an Extreme SuperHyperEdge $E\in E_{ESHG:(V,E)}$ has $z$ Extreme SuperHyperVertices, then the Extreme cardinality of the Extreme R-List-Coloring is at least
$$V\setminus (V\setminus\left\{a_{E},b_{E},c_{E},\ldots,z_{E}\right\}).$$
 It's straightforward that  the Extreme cardinality of the Extreme R-List-Coloring is at least the maximum Extreme number of Extreme SuperHyperVertices of the Extreme SuperHyperEdges with the maximum number of the Extreme SuperHyperEdges. In other words, the maximum number of the Extreme SuperHyperEdges contains the maximum Extreme number of Extreme SuperHyperVertices are renamed to Extreme List-Coloring in some cases but the maximum number of the  Extreme SuperHyperEdge with the maximum Extreme number of Extreme SuperHyperVertices, has the Extreme SuperHyperVertices are contained in an Extreme R-List-Coloring.
\end{proposition}
\begin{proposition}
 Assume a simple Extreme SuperHyperGraph $ESHG:(V,E).$ Then the Extreme number of  type-result-R-List-Coloring has, the least Extreme cardinality, the lower sharp Extreme bound for Extreme cardinality, is the Extreme cardinality of
$$V\setminus V\setminus\left\{a_{E},b_{E'},c_{E''},c_{E'''}\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
If there's an Extreme type-result-R-List-Coloring with the least Extreme cardinality, the lower sharp Extreme bound for cardinality.
\end{proposition}

\begin{proposition}
 Assume a connected loopless Extreme SuperHyperGraph $ESHG:(V,E).$ Then in the worst case, literally,
\begin{eqnarray*}
 &&
\mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}=\{V_1,E_1,V_2,E_2,V_3,E_3,V_4,E_4,V_1\}.
\\&&
\mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring SuperHyperPolynomial}=z^4.
\\&&
\mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}=\{V_1,V_2,V_3,V_4,V_1\}.
\\&&
\mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring SuperHyperPolynomial}=z^5.
\end{eqnarray*}
Is an Extreme type-result-List-Coloring. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme type-result-List-Coloring is the cardinality of
\begin{eqnarray*}
 &&
\mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}=\{V_1,E_1,V_2,E_2,V_3,E_3,V_4,E_4,V_1\}.
\\&&
\mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring SuperHyperPolynomial}=z^4.
\\&&
\mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}=\{V_1,V_2,V_3,V_4,V_1\}.
\\&&
\mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring SuperHyperPolynomial}=z^5.
\end{eqnarray*}
\end{proposition}

\begin{proof}
Assume a connected loopless Extreme SuperHyperGraph $ESHG:(V,E).$ The SuperHyperSet of the SuperHyperVertices $V\setminus V\setminus \{z\}$ isn't a quasi-R-List-Coloring since neither amount of Extreme SuperHyperEdges nor amount of SuperHyperVertices where amount refers to the Extreme number of SuperHyperVertices(-/SuperHyperEdges) more than one to form any kind of SuperHyperEdges or any number of SuperHyperEdges. Let us consider the Extreme SuperHyperSet
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots,a_{E'},b_{E'},c_{E'},\ldots\right\}_{E,E'=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
This Extreme SuperHyperSet of the Extreme SuperHyperVertices has the eligibilities to propose property such that there's no  Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an   Extreme SuperHyperEdge for all Extreme SuperHyperVertices but the maximum Extreme cardinality indicates that these Extreme  type-SuperHyperSets couldn't give us the Extreme lower bound in the term of Extreme sharpness. In other words, the Extreme SuperHyperSet
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots,a_{E'},b_{E'},c_{E'},\ldots\right\}_{E,E'=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}$$
of the Extreme SuperHyperVertices implies at least on-quasi-triangle style is up but sometimes the Extreme SuperHyperSet
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots,a_{E'},b_{E'},c_{E'},\ldots\right\}_{E,E'=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}$$
 of the Extreme SuperHyperVertices is free-quasi-triangle and it doesn't make a contradiction to the supposition on the connected loopless Extreme SuperHyperGraph $ESHG:(V,E).$ Thus the minimum case never happens in the generality of the connected loopless Extreme SuperHyperGraphs. Thus if we assume in the worst case, literally,
 $$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
Is a quasi-R-List-Coloring. In other words, the least cardinality, the lower sharp bound for the cardinality, of a  quasi-R-List-Coloring is the cardinality of
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
 Then we've lost some connected loopless Extreme SuperHyperClasses of the connected loopless Extreme SuperHyperGraphs titled free-triangle, on-triangle, and their quasi-types but the SuperHyperStable is only up in this quasi-R-List-Coloring. It's the contradiction to that fact on the generality. There are some counterexamples to deny this statement. One of them comes from the setting of the graph titled path and cycle as the counterexamples-classes or reversely direction star as the examples-classes, are well-known classes in that setting and they could be considered as the examples-classes and counterexamples-classes for the tight bound of
 $$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
  Let $V\setminus V\setminus \{z\}$ in mind. There's no necessity on the SuperHyperEdge since we need at least two SuperHyperVertices to form a SuperHyperEdge. It doesn't withdraw the principles of the main definition since there's no condition to be satisfied but the condition is on the existence of the SuperHyperEdge instead of acting on the SuperHyperVertices. In other words, if there's a SuperHyperEdge, then the Extreme SuperHyperSet has the necessary condition for the intended definition to be applied. Thus the $V\setminus V\setminus \{z\}$ is withdrawn not by the conditions of the main definition but by the necessity of the pre-condition on the usage of the main definition.
  \\
  The Extreme structure of the Extreme R-List-Coloring decorates the Extreme SuperHyperVertices don't have received any Extreme connections so as this Extreme style implies different versions of Extreme SuperHyperEdges with the maximum Extreme cardinality in the terms of Extreme SuperHyperVertices are spotlight. The lower Extreme bound is to have the maximum Extreme groups of Extreme SuperHyperVertices have perfect Extreme connections inside each of SuperHyperEdges and the outside of this Extreme SuperHyperSet doesn't matter but regarding the connectedness of the used Extreme SuperHyperGraph arising from its Extreme properties taken from the fact that it's simple. If there's no more than one Extreme SuperHyperVertex in the targeted Extreme SuperHyperSet, then there's no Extreme connection. Furthermore, the Extreme existence of one Extreme SuperHyperVertex has no  Extreme effect to talk about the Extreme R-List-Coloring. Since at least two Extreme SuperHyperVertices involve to make a title in the Extreme background of the Extreme SuperHyperGraph. The Extreme SuperHyperGraph is obvious if it has no Extreme SuperHyperEdge but at least two Extreme SuperHyperVertices make the Extreme version of Extreme SuperHyperEdge. Thus in the Extreme setting of non-obvious Extreme SuperHyperGraph, there are at least one Extreme SuperHyperEdge. It's necessary to mention that the word ``Simple'' is used as Extreme adjective for the initial Extreme SuperHyperGraph, induces there's no Extreme  appearance of the loop Extreme version of the Extreme SuperHyperEdge and this Extreme SuperHyperGraph is said to be loopless. The Extreme adjective ``loop'' on the basic Extreme framework engages one Extreme SuperHyperVertex but it never happens in this Extreme setting. With these Extreme bases, on an Extreme SuperHyperGraph, there's at least one Extreme SuperHyperEdge thus there's at least an Extreme R-List-Coloring has the Extreme cardinality of an Extreme SuperHyperEdge. Thus, an Extreme R-List-Coloring has the Extreme cardinality at least an Extreme SuperHyperEdge. Assume an Extreme SuperHyperSet $V\setminus V\setminus \{z\}.$ This Extreme SuperHyperSet isn't an Extreme R-List-Coloring since either the Extreme SuperHyperGraph is an obvious Extreme SuperHyperModel thus it never happens since there's no Extreme usage of this Extreme framework and even more there's no Extreme connection inside or the Extreme SuperHyperGraph isn't obvious and as its consequences, there's an Extreme contradiction with the term ``Extreme R-List-Coloring'' since the maximum Extreme cardinality never happens for this Extreme style of the Extreme SuperHyperSet and beyond that there's no Extreme connection inside as mentioned in first Extreme case in the forms of drawback for this selected Extreme SuperHyperSet. Let
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots,a_{E'},b_{E'},c_{E'},\ldots\right\}_{E,E'=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}$$
Comes up. This Extreme case implies having the Extreme style of on-quasi-triangle Extreme style on the every Extreme elements of this Extreme SuperHyperSet. Precisely, the Extreme R-List-Coloring is the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that some Extreme amount of the Extreme SuperHyperVertices are on-quasi-triangle Extreme style. The Extreme cardinality of the v SuperHypeSet
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots,a_{E'},b_{E'},c_{E'},\ldots\right\}_{E,E'=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}$$
Is the maximum in comparison to the Extreme SuperHyperSet
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
But the lower Extreme bound is up. Thus the minimum Extreme cardinality of the maximum Extreme cardinality ends up the Extreme discussion. The first Extreme term refers to the Extreme setting of the Extreme SuperHyperGraph but this key point is enough since there's an Extreme SuperHyperClass of an Extreme SuperHyperGraph has no on-quasi-triangle Extreme style amid some amount of its Extreme SuperHyperVertices. This Extreme setting of the Extreme SuperHyperModel proposes an Extreme SuperHyperSet has only some amount  Extreme SuperHyperVertices from one Extreme SuperHyperEdge such that there's no Extreme amount of Extreme SuperHyperEdges more than one involving these some amount of these Extreme SuperHyperVertices. The Extreme cardinality of this Extreme SuperHyperSet is the maximum and the Extreme case is occurred in the minimum Extreme situation. To sum them up, the Extreme SuperHyperSet
 $$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
Has the maximum Extreme cardinality such that
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
Contains some Extreme SuperHyperVertices such that there's distinct-covers-order-amount Extreme SuperHyperEdges for amount of Extreme SuperHyperVertices taken from the Extreme SuperHyperSet
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
 It means that the Extreme SuperHyperSet of the Extreme SuperHyperVertices
  $$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
Is an Extreme  R-List-Coloring for the Extreme SuperHyperGraph as used Extreme background in the Extreme terms of worst Extreme case and the common theme of the lower Extreme bound occurred in the specific Extreme SuperHyperClasses of the Extreme SuperHyperGraphs which are Extreme free-quasi-triangle.
  \\
Assume an Extreme SuperHyperEdge $E\in E_{ESHG:(V,E)}$ has $z$  Extreme number of the Extreme SuperHyperVertices. Then every Extreme SuperHyperVertex has at least no Extreme SuperHyperEdge with others in common. Thus those Extreme SuperHyperVertices have the eligibles to be contained in an Extreme R-List-Coloring. Those Extreme SuperHyperVertices are potentially included in an Extreme  style-R-List-Coloring. Formally, consider
$$V\setminus (V\setminus\left\{a_{E},b_{E},c_{E},\ldots,z_{E}\right\}).$$
Are the Extreme SuperHyperVertices of an Extreme SuperHyperEdge $E\in E_{ESHG:(V,E)}.$ Thus $$Z_i\sim Z_j,~i\neq j,~ i,j=1,2,\ldots,z.$$ where the $\sim$ isn't an equivalence relation but only the symmetric relation on the Extreme  SuperHyperVertices of the Extreme SuperHyperGraph. The formal definition is as follows. $$Z_i\sim Z_j,~i\neq j,~ i,j=1,2,\ldots,z$$ if and only if $Z_i$ and $Z_j$ are the Extreme SuperHyperVertices and there's only and only one  Extreme SuperHyperEdge $E\in E_{ESHG:(V,E)}$ between the Extreme SuperHyperVertices $Z_i$ and $Z_j.$ The other definition for the Extreme SuperHyperEdge $E\in E_{ESHG:(V,E)}$ in the terms of Extreme R-List-Coloring is
$$\left\{a_{E},b_{E},c_{E},\ldots,z_{E}\right\}.$$
This definition coincides with the definition of the Extreme R-List-Coloring but with slightly differences in the maximum Extreme cardinality amid those Extreme type-SuperHyperSets of the Extreme SuperHyperVertices. Thus the Extreme SuperHyperSet of the Extreme SuperHyperVertices,
$$\max_z|\{Z_1,Z_2,\ldots,Z_z~|~Z_i\sim Z_j,~i\neq j,~ i,j=1,2,\ldots,z\}|_{\text{Extreme cardinality}},$$
and
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
is formalized with mathematical literatures on the Extreme R-List-Coloring. Let $Z_i\overset E\sim Z_j,$ be defined as $Z_i$ and $Z_j$ are the Extreme SuperHyperVertices belong to the Extreme SuperHyperEdge $E\in E_{ESHG:(V,E)}.$ Thus,  
$$E=\{Z_1,Z_2,\ldots,Z_z~|~Z_i\overset E\sim Z_j,~i\neq j,~ i,j=1,2,\ldots,z\}.$$
Or
$$\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
But with the slightly differences,
\begin{eqnarray*}
 &&
 \text{Extreme R-List-Coloring}=
 \\&&
 \{Z_1,Z_2,\ldots,Z_z~|~\forall i\neq j,~ i,j=1,2,\ldots,z,~\exists E_x,~Z_i\overset{E_x}\sim Z_j,\}.
\end{eqnarray*}
\begin{eqnarray*}
 &&
 \text{Extreme R-List-Coloring}=
 \\&&
V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.
\end{eqnarray*}
Thus $E\in E_{ESHG:(V,E)}$ is an Extreme quasi-R-List-Coloring where $E\in E_{ESHG:(V,E)}$ is fixed that means $E_x=E\in E_{ESHG:(V,E)}.$ for all Extreme intended SuperHyperVertices but in an Extreme List-Coloring, $E_x=E\in E_{ESHG:(V,E)}$ could be different and it's not unique. To sum them up, in a connected Extreme  SuperHyperGraph $ESHG:(V,E).$ If an Extreme SuperHyperEdge $E\in E_{ESHG:(V,E)}$ has $z$ Extreme SuperHyperVertices, then the Extreme cardinality of the Extreme R-List-Coloring is at least
$$V\setminus (V\setminus\left\{a_{E},b_{E},c_{E},\ldots,z_{E}\right\}).$$
 It's straightforward that  the Extreme cardinality of the Extreme R-List-Coloring is at least the maximum Extreme number of Extreme SuperHyperVertices of the Extreme SuperHyperEdges with the maximum number of the Extreme SuperHyperEdges. In other words, the maximum number of the Extreme SuperHyperEdges contains the maximum Extreme number of Extreme SuperHyperVertices are renamed to Extreme List-Coloring in some cases but the maximum number of the  Extreme SuperHyperEdge with the maximum Extreme number of Extreme SuperHyperVertices, has the Extreme SuperHyperVertices are contained in an Extreme R-List-Coloring.
\\
The obvious SuperHyperGraph has no Extreme SuperHyperEdges. But the non-obvious Extreme SuperHyperModel is up. The quasi-SuperHyperModel addresses some issues about the Extreme optimal SuperHyperObject. It specially delivers some remarks on the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that there's distinct amount of Extreme SuperHyperEdges for distinct amount of Extreme SuperHyperVertices up to all  taken from that Extreme SuperHyperSet of the Extreme SuperHyperVertices but this Extreme SuperHyperSet of the Extreme SuperHyperVertices is either has the maximum Extreme SuperHyperCardinality or it doesn't have  maximum Extreme SuperHyperCardinality. In a non-obvious SuperHyperModel, there's at least one Extreme SuperHyperEdge containing at least all Extreme SuperHyperVertices. Thus it forms an Extreme quasi-R-List-Coloring where the Extreme completion of the Extreme incidence is up in that.  Thus it's, literarily, an Extreme embedded R-List-Coloring. The SuperHyperNotions of embedded SuperHyperSet and quasi-SuperHyperSet coincide. In the original setting, these types of SuperHyperSets only don't satisfy on the maximum SuperHyperCardinality. Thus the embedded setting is elected such that those SuperHyperSets have the maximum Extreme SuperHyperCardinality and they're Extreme SuperHyperOptimal. The less than two distinct types of Extreme SuperHyperVertices are included in the minimum Extreme style of the embedded Extreme R-List-Coloring. The interior types of the Extreme SuperHyperVertices are deciders. Since the Extreme number of SuperHyperNeighbors are only  affected by the interior Extreme SuperHyperVertices. The common connections, more precise and more formal, the perfect unique connections inside the Extreme SuperHyperSet for any distinct types of Extreme SuperHyperVertices pose the Extreme R-List-Coloring. Thus Extreme exterior SuperHyperVertices could be used only in one Extreme SuperHyperEdge and in Extreme SuperHyperRelation with the interior Extreme SuperHyperVertices in that  Extreme SuperHyperEdge. In the embedded Extreme List-Coloring, there's the usage of exterior Extreme SuperHyperVertices since they've more connections inside more than outside. Thus the title ``exterior'' is more relevant than the title ``interior''. One Extreme SuperHyperVertex has no connection, inside. Thus, the Extreme SuperHyperSet of the Extreme SuperHyperVertices with one SuperHyperElement has been ignored in the exploring to lead on the optimal case implying the Extreme R-List-Coloring. The Extreme R-List-Coloring with the exclusion of the exclusion of all  Extreme SuperHyperVertices in one Extreme SuperHyperEdge and with other terms, the Extreme R-List-Coloring with the inclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge, is an Extreme quasi-R-List-Coloring. To sum them up, in a connected non-obvious Extreme  SuperHyperGraph $ESHG:(V,E).$ There's only one  Extreme SuperHyperEdge $E\in E_{ESHG:(V,E)}$ has only the maximum possibilities of the distinct interior Extreme SuperHyperVertices inside of any given Extreme quasi-R-List-Coloring minus all  Extreme SuperHypeNeighbor to some of them but not all of them. In other words, there's only an unique Extreme SuperHyperEdge $E\in E_{ESHG:(V,E)}$ has only two distinct Extreme SuperHyperVertices in an  Extreme quasi-R-List-Coloring, minus all  Extreme SuperHypeNeighbor to some of them but not all of them.
\\
The main definition of the Extreme R-List-Coloring has two titles. an Extreme quasi-R-List-Coloring and its corresponded quasi-maximum Extreme R-SuperHyperCardinality are two titles in the terms of quasi-R-styles. For any Extreme number, there's an Extreme quasi-R-List-Coloring with that quasi-maximum Extreme SuperHyperCardinality in the terms of the embedded Extreme SuperHyperGraph. If there's an embedded Extreme SuperHyperGraph, then the Extreme quasi-SuperHyperNotions lead us to take the collection of all the Extreme quasi-R-List-Colorings for all Extreme numbers less than its Extreme corresponded maximum number. The essence of the Extreme List-Coloring ends up but this essence starts up in the terms of the Extreme quasi-R-List-Coloring, again and more in the operations of collecting all the Extreme quasi-R-List-Colorings acted on the all possible used formations of the Extreme SuperHyperGraph to achieve one Extreme number. This Extreme number is\\ considered as the equivalence class for all corresponded quasi-R-List-Colorings. Let $z_{\text{Extreme Number}},S_{\text{Extreme SuperHyperSet}}$ and $G_{\text{Extreme List-Coloring}}$ be an Extreme number, an Extreme SuperHyperSet and an Extreme List-Coloring. Then
\begin{eqnarray*}
&&[z_{\text{Extreme Number}}]_{\text{Extreme Class}}=\{S_{\text{Extreme SuperHyperSet}}~|
\\&&~S_{\text{Extreme SuperHyperSet}}=G_{\text{Extreme List-Coloring}},
\\&&~|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&=z_{\text{Extreme Number}}\}.
\end{eqnarray*}
As its consequences, the formal definition of the Extreme List-Coloring is re-formalized and redefined as follows.
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}=
\\&&
\cup_{z_{\text{Extreme Number}}}\{S_{\text{Extreme SuperHyperSet}}~|
\\&&~S_{\text{Extreme SuperHyperSet}}=G_{\text{Extreme List-Coloring}},
\\&&~|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&=z_{\text{Extreme Number}}\}.
\end{eqnarray*}
To get more precise perceptions, the follow-up expressions propose another formal technical definition for the Extreme List-Coloring.
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}=
\\&&
\{S\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}=
\\&&
\cup_{z_{\text{Extreme Number}}}\{S_{\text{Extreme SuperHyperSet}}~|
\\&&~S_{\text{Extreme SuperHyperSet}}=G_{\text{Extreme List-Coloring}},
\\&&~|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&=z_{\text{Extreme Number}}~|~
\\&&
|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&
=\max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}z_{\text{Extreme Number}}
\}.
\end{eqnarray*}
In more concise and more convenient ways, the modified definition for the Extreme List-Coloring poses the upcoming expressions.
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}=
\\&&
\{S\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}~|~
\\&&
|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&
=\max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}z_{\text{Extreme Number}}
\}.
\end{eqnarray*}
To translate the statement to this mathematical literature, the  formulae will be revised.
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}=
\\&&
\{S\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}~|~
\\&&
|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&
=\max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}z_{\text{Extreme Number}}
\\&&
=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}
\}.
\end{eqnarray*}
And then,
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}=
\\&&
\{S\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}~|~
\\&&
|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}\\&&
=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}
\}.
\end{eqnarray*}
To get more visions in the closer look-up, there's an overall overlook.
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}=
\\&&
\cup_{z_{\text{Extreme Number}}}\{S_{\text{Extreme SuperHyperSet}}~|
\\&&~S_{\text{Extreme SuperHyperSet}}=G_{\text{Extreme List-Coloring}},
\\&&~|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&
=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\}.
\end{eqnarray*}
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}=
\\&&
\{S\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}=
\\&&
\cup_{z_{\text{Extreme Number}}}\{S_{\text{Extreme SuperHyperSet}}~|
\\&&~S_{\text{Extreme SuperHyperSet}}=G_{\text{Extreme List-Coloring}},
\\&&~|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&=z_{\text{Extreme Number}}~|~
\\&&
|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&
=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}
\}.
\end{eqnarray*}
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}=
\\&&
\{S\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}~|~
\\&&
|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&
=\max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}z_{\text{Extreme Number}}
\\&&
=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}
\}.
\end{eqnarray*}
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}=
\\&&
\{S\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}~|~
\\&&
|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&
=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}
\}.
\end{eqnarray*}
Now, the extension of these types of approaches is up. Since the new term, ``Extreme SuperHyperNeighborhood'', could be redefined as the collection of the Extreme SuperHyperVertices such that any amount of its Extreme SuperHyperVertices are incident to an Extreme  SuperHyperEdge. It's, literarily,  another name for ``Extreme  Quasi-List-Coloring'' but, precisely, it's the generalization of  ``Extreme  Quasi-List-Coloring'' since ``Extreme Quasi-List-Coloring'' happens ``Extreme List-Coloring'' in an Extreme SuperHyperGraph as initial framework and background but ``Extreme SuperHyperNeighborhood'' may not happens ``Extreme List-Coloring'' in an Extreme SuperHyperGraph as initial framework and preliminarily background since there are some ambiguities about the Extreme SuperHyperCardinality arise from it. To get orderly keywords, the terms, ``Extreme SuperHyperNeighborhood'',  ``Extreme Quasi-List-Coloring'', and  ``Extreme List-Coloring'' are up.
\\
Thus, let $z_{\text{Extreme Number}},N_{\text{Extreme SuperHyperNeighborhood}}$ and $G_{\text{Extreme List-Coloring}}$ be an Extreme number, an Extreme SuperHyperNeighborhood and an Extreme List-Coloring and the new terms are up.
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}=
\\&&
\cup_{z_{\text{Extreme Number}}}\{N_{\text{Extreme SuperHyperNeighborhood}}~|
\\&&~|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}
\\&&=\max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}z_{\text{Extreme Number}}\}.
\end{eqnarray*}
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}=
\\&&
\{N_{\text{Extreme SuperHyperNeighborhood}}
\\&&
\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}=
\\&&
\cup_{z_{\text{Extreme Number}}}\{N_{\text{Extreme SuperHyperNeighborhood}}~|
\\&&~|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&=z_{\text{Extreme Number}}~|~
\\&&
|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}
\\&&
=\max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}z_{\text{Extreme Number}}
\}.
\end{eqnarray*}
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}=
\\&&
\{N_{\text{Extreme SuperHyperNeighborhood}}
\\&&
\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}~|~
\\&&
|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}
\\&&
=\max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}z_{\text{Extreme Number}}
\}.
\end{eqnarray*}
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}=
\\&&
\{N_{\text{Extreme SuperHyperNeighborhood}}
\\&&
\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}~|~
\\&&
|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&
=\max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}z_{\text{Extreme Number}}
\}.
\end{eqnarray*}
And with go back to initial structure,
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}=
\\&&
\cup_{z_{\text{Extreme Number}}}\{N_{\text{Extreme SuperHyperNeighborhood}}~|
\\&&~|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}
\\&&
=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}
\}.
\end{eqnarray*}
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}=
\\&&
\{N_{\text{Extreme SuperHyperNeighborhood}}
\\&&
\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}=
\\&&
\cup_{z_{\text{Extreme Number}}}\{N_{\text{Extreme SuperHyperNeighborhood}}~|
\\&&~|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&=z_{\text{Extreme Number}}~|~
\\&&
|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}
\\&&
=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}
\}.
\end{eqnarray*}
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}=
\\&&
\{N_{\text{Extreme SuperHyperNeighborhood}}
\\&&
\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}~|~
\\&&
|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}
\\&&
=\max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}z_{\text{Extreme Number}}
\\&&
=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}
\}.
\end{eqnarray*}
\begin{eqnarray*}
&&G_{\text{Extreme List-Coloring}}=
\\&&
\{N_{\text{Extreme SuperHyperNeighborhood}}
\\&&
\in\cup_{z_{\text{Extreme Number}}}[z_{\text{Extreme Number}}]_{\text{Extreme Class}}~|~
\\&&
|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}
\\&&
=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}
\}.
\end{eqnarray*}
Thus, in a connected Extreme SuperHyperGraph $ESHG:(V,E).$ The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-List-Coloring if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme  SuperHyperNeighbors with no Extreme exception at all minus  all Extreme SuperHypeNeighbors to any amount of them.
\\
  To make sense with the precise words in the terms of ``R-', the follow-up illustrations are coming up.
  \\
  The following Extreme SuperHyperSet  of Extreme  SuperHyperVertices is the simple Extreme type-SuperHyperSet of the Extreme R-List-Coloring.
 $$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
   The Extreme SuperHyperSet of Extreme SuperHyperVertices,
 $$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
Is the simple Extreme type-SuperHyperSet of the Extreme R-List-Coloring. The Extreme SuperHyperSet of the Extreme SuperHyperVertices,  
 $$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
Is an \underline{\textbf{Extreme R-List-Coloring}} $\mathcal{C}(ESHG)$ for an  Extreme SuperHyperGraph $ESHG:(V,E)$ is an Extreme  type-SuperHyperSet with \underline{\textbf{the maximum Extreme cardinality}}  of an Extreme SuperHyperSet $S$ of Extreme SuperHyperVertices such that there's no an Extreme  SuperHyperEdge amid some Extreme SuperHyperVertices instead of all given by \underline{\textbf{Extreme List-Coloring}} is related to the Extreme SuperHyperSet of the Extreme SuperHyperVertices,
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
   There's   \underline{not} only \underline{\textbf{one}} Extreme SuperHyperVertex \underline{\textbf{inside}} the intended Extreme SuperHyperSet. Thus the non-obvious  Extreme List-Coloring is up. The obvious simple Extreme type-SuperHyperSet called the  Extreme List-Coloring is an Extreme SuperHyperSet \underline{\textbf{includes}} only \underline{\textbf{one}} Extreme SuperHyperVertex. But the Extreme SuperHyperSet of Extreme SuperHyperVertices,
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
   doesn't have less than two  SuperHyperVertices \underline{\textbf{inside}} the intended Extreme SuperHyperSet since they've come from at least so far an SuperHyperEdge. Thus the non-obvious simple Extreme type-SuperHyperSet of the  Extreme R-List-Coloring \underline{\textbf{is}} up. To sum them up, the Extreme SuperHyperSet of Extreme SuperHyperVertices,
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
   \underline{\textbf{Is}} the non-obvious simple Extreme type-SuperHyperSet of the  Extreme R-List-Coloring. Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices,
 $$(V\setminus V\setminus \{x,z\})\cup\{xy\}$$ or $$(V\setminus V\setminus \{x,z\})\cup\{zy\}$$
   is an  Extreme R-List-Coloring $\mathcal{C}(ESHG)$ for an  Extreme SuperHyperGraph $ESHG:(V,E)$ is the Extreme SuperHyperSet $S$ of Extreme SuperHyperVertices such that there's no an Extreme  SuperHyperEdge for some  Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet  called the  Extreme List-Coloring \underline{\textbf{and}} it's an  Extreme \underline{\textbf{ List-Coloring}}. Since it\underline{\textbf{'s}}   \underline{\textbf{the maximum Extreme cardinality}} of  an Extreme SuperHyperSet $S$ of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some amount Extreme  SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the  Extreme List-Coloring. There isn't  only less than two Extreme  SuperHyperVertices \underline{\textbf{inside}} the intended  Extreme SuperHyperSet,
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
   Thus the non-obvious  Extreme R-List-Coloring,
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
  is up. The non-obvious simple Extreme type-SuperHyperSet of the  Extreme List-Coloring, not:
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
Is  the Extreme SuperHyperSet, not:
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
 does includes only less than two SuperHyperVertices in a connected Extreme  SuperHyperGraph $ESHG:(V,E)$ but it's impossible in the case, they've corresponded to an SuperHyperEdge. It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the
\begin{center}
\underline{\textbf{``Extreme  R-List-Coloring''}}
\end{center}
 amid those obvious[non-obvious] simple Extreme type-SuperHyperSets called the
\begin{center}
 \underline{\textbf{Extreme R-List-Coloring}},
\end{center}
 is only and only
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
In a connected Extreme SuperHyperGraph $ESHG:(V,E)$  with a illustrated SuperHyperModeling. It's also, not only an Extreme free-triangle embedded SuperHyperModel and an Extreme on-triangle embedded SuperHyperModel but also it's an Extreme stable embedded SuperHyperModel. But all only non-obvious simple Extreme type-SuperHyperSets of the Extreme  R-List-Coloring amid those obvious simple Extreme type-SuperHyperSets of the Extreme List-Coloring, are
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
 In a connected Extreme SuperHyperGraph $ESHG:(V,E).$
\\
To sum them up,  assume a connected loopless Extreme SuperHyperGraph $ESHG:(V,E).$ Then in the worst case, literally,
$$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
 is an Extreme R-List-Coloring. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme  R-List-Coloring is the cardinality of
 $$V\setminus V\setminus\left\{a_{E},b_{E},c_{E},\ldots\right\}_{E=\left\{E\in E_{ESHG:(V,E)}~|~|E|=\max\left\{|E|~|~E\in E_{ESHG:(V,E)}\right\}\right\}}.$$
  \\
To sum them up,  in a connected Extreme SuperHyperGraph $ESHG:(V,E).$ The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-List-Coloring if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme  SuperHyperNeighbors with no Extreme exception at all minus  all Extreme SuperHypeNeighbors to any amount of them.
\\
Assume a connected Extreme  SuperHyperGraph $ESHG:(V,E).$ Let an Extreme SuperHyperEdge $ESHE: E\in E_{ESHG:(V,E)}$ has some Extreme SuperHyperVertices $r.$ Consider all Extreme numbers of those Extreme SuperHyperVertices from that Extreme SuperHyperEdge excluding excluding more than $r$ distinct Extreme SuperHyperVertices, exclude to any given Extreme SuperHyperSet of the Extreme SuperHyperVertices. Consider there's an Extreme  R-List-Coloring with the least cardinality, the lower sharp Extreme bound for Extreme cardinality. Assume a connected Extreme SuperHyperGraph $ESHG:(V,E).$ The Extreme SuperHyperSet of the Extreme SuperHyperVertices $ V_{ESHE}\setminus \{z\}$ is an Extreme SuperHyperSet $S$ of  the Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have  some Extreme SuperHyperVertices uniquely but it isn't an Extreme R-List-Coloring. Since it doesn't have  \underline{\textbf{the maximum Extreme cardinality}} of an Extreme SuperHyperSet $S$ of  Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have some SuperHyperVertices uniquely. The Extreme SuperHyperSet of the Extreme SuperHyperVertices $V_{ESHE}\cup \{z\}$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of Extreme SuperHyperVertices but it isn't an Extreme R-List-Coloring. Since it \textbf{\underline{doesn't do}} the Extreme procedure such that such that there's an Extreme SuperHyperEdge to have some Extreme  SuperHyperVertices uniquely  [there are at least one Extreme SuperHyperVertex outside  implying there's, sometimes in  the connected Extreme SuperHyperGraph $ESHG:(V,E),$ an Extreme SuperHyperVertex, titled its Extreme SuperHyperNeighbor,  to that Extreme SuperHyperVertex in the Extreme SuperHyperSet $S$ so as $S$ doesn't do ``the Extreme procedure''.]. There's  only \textbf{\underline{one}} Extreme SuperHyperVertex    \textbf{\underline{outside}} the intended Extreme SuperHyperSet, $V_{ESHE}\cup \{z\},$ in the terms of Extreme SuperHyperNeighborhood. Thus the obvious Extreme R-List-Coloring,  $V_{ESHE}$ is up. The obvious simple Extreme type-SuperHyperSet of the  Extreme R-List-Coloring,  $V_{ESHE},$ \textbf{\underline{is}} an Extreme SuperHyperSet, $V_{ESHE},$  \textbf{\underline{includes}} only \textbf{\underline{all}}  Extreme SuperHyperVertices does forms any kind of Extreme pairs are titled   \underline{Extreme SuperHyperNeighbors} in a connected Extreme SuperHyperGraph $ESHG:(V,E).$ Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices $V_{ESHE},$ is the \textbf{\underline{maximum Extreme SuperHyperCardinality}} of an Extreme SuperHyperSet $S$ of  Extreme SuperHyperVertices  \textbf{\underline{such that}}  there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely. Thus, in a connected Extreme SuperHyperGraph $ESHG:(V,E).$ Any Extreme R-List-Coloring only contains all interior Extreme SuperHyperVertices and all exterior Extreme SuperHyperVertices from the unique Extreme SuperHyperEdge where there's any of them has all possible  Extreme SuperHyperNeighbors in and there's all  Extreme SuperHyperNeighborhoods in with no exception minus all  Extreme SuperHypeNeighbors to some of them not all of them  but everything is possible about Extreme SuperHyperNeighborhoods and Extreme SuperHyperNeighbors out.
\\
The SuperHyperNotion, namely,  List-Coloring, is up.  There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet  of Extreme  SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme List-Coloring.
 The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}
           \\&&=\{E_{2i-1}\}_{i=1}^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
 \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring SuperHyperPolynomial}
  \\&&=2z^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
   \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring}=\{V_i\}_{i=1}^{s},\{V_j\}_{j=1}^{t}.
 \\&&
  \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring SuperHyperPolynomial}=az^{s}+bz^{t}.
\end{eqnarray*}
  is the simple Extreme type-SuperHyperSet of the Extreme List-Coloring. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}
           \\&&=\{E_{2i-1}\}_{i=1}^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
 \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring SuperHyperPolynomial}
  \\&&=2z^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
   \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring}=\{V_i\}_{i=1}^{s},\{V_j\}_{j=1}^{t}.
 \\&&
  \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring SuperHyperPolynomial}=az^{s}+bz^{t}.
\end{eqnarray*}
Is an \underline{\textbf{Extreme List-Coloring}} $\mathcal{C}(ESHG)$ for an  Extreme SuperHyperGraph $ESHG:(V,E)$ is an Extreme  type-SuperHyperSet with \underline{\textbf{the maximum Extreme cardinality}}  of an Extreme SuperHyperSet $S$ of Extreme SuperHyperEdges[SuperHyperVertices] such that there's no  Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an   Extreme SuperHyperEdge for all Extreme SuperHyperVertices. There are    \underline{not} only \underline{\textbf{two}} Extreme SuperHyperVertices \underline{\textbf{inside}} the intended Extreme SuperHyperSet. Thus the non-obvious  Extreme List-Coloring is up. The obvious simple Extreme type-SuperHyperSet called the  Extreme List-Coloring is an Extreme SuperHyperSet \underline{\textbf{includes}} only \underline{\textbf{two}} Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}
           \\&&=\{E_{2i-1}\}_{i=1}^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
 \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring SuperHyperPolynomial}
  \\&&=2z^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
   \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring}=\{V_i\}_{i=1}^{s},\{V_j\}_{j=1}^{t}.
 \\&&
  \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring SuperHyperPolynomial}=az^{s}+bz^{t}.
\end{eqnarray*}
Doesn't have less than three  SuperHyperVertices \underline{\textbf{inside}} the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the  Extreme List-Coloring \underline{\textbf{is}} up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}
           \\&&=\{E_{2i-1}\}_{i=1}^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
 \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring SuperHyperPolynomial}
  \\&&=2z^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
   \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring}=\{V_i\}_{i=1}^{s},\{V_j\}_{j=1}^{t}.
 \\&&
  \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring SuperHyperPolynomial}=az^{s}+bz^{t}.
\end{eqnarray*}\underline{\textbf{Is}} the non-obvious simple Extreme type-SuperHyperSet of the  Extreme List-Coloring. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}
           \\&&=\{E_{2i-1}\}_{i=1}^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
 \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring SuperHyperPolynomial}
  \\&&=2z^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
   \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring}=\{V_i\}_{i=1}^{s},\{V_j\}_{j=1}^{t}.
 \\&&
  \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring SuperHyperPolynomial}=az^{s}+bz^{t}.
\end{eqnarray*}
Is an  Extreme List-Coloring $\mathcal{C}(ESHG)$ for an  Extreme SuperHyperGraph $ESHG:(V,E)$ is the Extreme SuperHyperSet $S$ of Extreme SuperHyperVertices such that there's no an Extreme  SuperHyperEdge for some  Extreme SuperHyperVertices given by that Extreme type-SuperHyperSet  called the  Extreme List-Coloring \underline{\textbf{and}} it's an  Extreme \underline{\textbf{ List-Coloring}}. Since it\underline{\textbf{'s}}   \underline{\textbf{the maximum Extreme cardinality}} of  an Extreme SuperHyperSet $S$ of  Extreme SuperHyperEdges[SuperHyperVertices] such that there's no  Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an   Extreme SuperHyperEdge for all Extreme SuperHyperVertices. There aren't  only less than three Extreme  SuperHyperVertices \underline{\textbf{inside}} the intended  Extreme SuperHyperSet,
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}
           \\&&=\{E_{2i-1}\}_{i=1}^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
 \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring SuperHyperPolynomial}
  \\&&=2z^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
   \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring}=\{V_i\}_{i=1}^{s},\{V_j\}_{j=1}^{t}.
 \\&&
  \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring SuperHyperPolynomial}=az^{s}+bz^{t}.
\end{eqnarray*}
 Thus the non-obvious  Extreme List-Coloring, \begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}
           \\&&=\{E_{2i-1}\}_{i=1}^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
 \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring SuperHyperPolynomial}
  \\&&=2z^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
   \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring}=\{V_i\}_{i=1}^{s},\{V_j\}_{j=1}^{t}.
 \\&&
  \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring SuperHyperPolynomial}=az^{s}+bz^{t}.
\end{eqnarray*}
Is up. The obvious simple Extreme type-SuperHyperSet of the  Extreme List-Coloring, not: \begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}
           \\&&=\{E_{2i-1}\}_{i=1}^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
 \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring SuperHyperPolynomial}
  \\&&=2z^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
   \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring}=\{V_i\}_{i=1}^{s},\{V_j\}_{j=1}^{t}.
 \\&&
  \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring SuperHyperPolynomial}=az^{s}+bz^{t}.
\end{eqnarray*}
Is  the Extreme SuperHyperSet, not:
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}
           \\&&=\{E_{2i-1}\}_{i=1}^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
 \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring SuperHyperPolynomial}
  \\&&=2z^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
   \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring}=\{V_i\}_{i=1}^{s},\{V_j\}_{j=1}^{t}.
 \\&&
  \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring SuperHyperPolynomial}=az^{s}+bz^{t}.
\end{eqnarray*}
Does includes only less than three SuperHyperVertices in a connected Extreme  SuperHyperGraph $ESHG:(V,E).$ It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the
\begin{center}
\underline{\textbf{``Extreme  List-Coloring''}}
\end{center}
 amid those obvious[non-obvious] simple Extreme type-SuperHyperSets called the
\begin{center}
 \underline{\textbf{Extreme List-Coloring}},
\end{center}
 is only and only
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring}
           \\&&=\{E_{2i-1}\}_{i=1}^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
 \mathcal{C}(NSHG)_{Extreme Quasi-List-Coloring SuperHyperPolynomial}
  \\&&=2z^{\lfloor\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{2}\rfloor}.
 \\&&
   \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring}=\{V_i\}_{i=1}^{s},\{V_j\}_{j=1}^{t}.
 \\&&
  \mathcal{C}(NSHG)_{Extreme R-Quasi-List-Coloring SuperHyperPolynomial}=az^{s}+bz^{t}.
\end{eqnarray*}
 In a connected Extreme SuperHyperGraph $ESHG:(V,E).$
 \end{proof}

\section{The Extreme Departures on The Theoretical Results Toward Theoretical Motivations}
The previous Extreme approach apply on the upcoming Extreme results on Extreme SuperHyperClasses.
\begin{proposition}
Assume a connected Extreme SuperHyperPath $ESHP:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
     \\&&      
          =\{E_1,E_2\}_{i=1}^{|E_{NSHG}|}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
  \\&&
 =(|E_{NSHG}|-1)z^2.
 \\&&  
    \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
     \\&&
             =\{V^{EXTERNAL}_i\}_{V^{EXTERNAL}_i\in E_i\in\{E_a~|~ |E_a|=\max |E_b|_{E_b\in E_{NSHG}}~\}}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
  \\&&
 =z^{\max |E_b|_{E_b\in E_{NSHG}}~}.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
  \\&&\ldots,
   \\&&V^{EXTERNAL}_{\frac{|E_{NSHG}|}{3}},E_{\frac{|E_{NSHG}|}{3}}
 \end{eqnarray*}
  \begin{eqnarray*}
 && P:
 \\&&
 E_1,V^{EXTERNAL}_1,
 \\&&E_2,V^{EXTERNAL}_2,
  \\&&\ldots,
   \\&&E_{\frac{|E_{NSHG}|}{3}},V^{EXTERNAL}_{\frac{|E_{NSHG}|}{3}}
 \end{eqnarray*}
be a longest path taken from a connected Extreme SuperHyperPath $ESHP:(V,E).$ There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperList-Coloring. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM18a}
In the Figure \eqref{136NSHG18a}, the connected Extreme SuperHyperPath $ESHP:(V,E),$ is highlighted and featured. The Extreme SuperHyperSet,  in the Extreme SuperHyperModel \eqref{136NSHG18a}, is the  SuperHyperList-Coloring.
\begin{figure}
\includegraphics[width=100mm]{136NSHG18.png}
\caption{an Extreme SuperHyperPath Associated to the Notions of  Extreme SuperHyperList-Coloring in the Example \eqref{136EXM18a}}
\label{136NSHG18a}
\end{figure}
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperCycle $ESHC:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
     \\&&      
          =\{E_1,E_2\}_{i=1}^{|E_{NSHG}|}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
  \\&&
 =(|E_{NSHG}|-1)z^2.
 \\&&  
    \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
     \\&&
             =\{V^{EXTERNAL}_i\}_{V^{EXTERNAL}_i\in E_i\in\{E_a~|~ |E_a|=\max |E_b|_{E_b\in E_{NSHG}}~\}}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
  \\&&
 =z^{\max |E_b|_{E_b\in E_{NSHG}}~}.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
  \\&&\ldots,
   \\&&V^{EXTERNAL}_{\frac{|E_{NSHG}|}{3}},E_{\frac{|E_{NSHG}|}{3}}
 \end{eqnarray*}
  \begin{eqnarray*}
 && P:
 \\&&
 E_1,V^{EXTERNAL}_1,
 \\&&E_2,V^{EXTERNAL}_2,
  \\&&\ldots,
   \\&&E_{\frac{|E_{NSHG}|}{3}},V^{EXTERNAL}_{\frac{|E_{NSHG}|}{3}}
 \end{eqnarray*}
  be a longest path taken from a connected Extreme SuperHyperCycle $ESHC:(V,E).$ There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperList-Coloring. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM19a}
In the Figure \eqref{136NSHG19a}, the connected Extreme SuperHyperCycle $NSHC:(V,E),$ is highlighted and featured. The obtained Extreme SuperHyperSet, in the Extreme SuperHyperModel \eqref{136NSHG19a},
is the Extreme  SuperHyperList-Coloring.
\begin{figure}
\includegraphics[width=100mm]{136NSHG19.png}
\caption{an Extreme SuperHyperCycle Associated to the Extreme Notions of  Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM19a}}
\label{136NSHG19a}
\end{figure}
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperStar $ESHS:(V,E).$ Then  
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
     \\&&      
          =\{E_i\}_{i=1}^{|E_{NSHG}|}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
  \\&&
 =z^{|E_{NSHG}|}.
 \\&&  
    \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
     \\&&
             =\{V^{EXTERNAL}_i\}_{V^{EXTERNAL}_i\in E_i\in\{E_a~|~ |E_a|=\max |E_b|_{E_b\in E_{NSHG}}~\}}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
  \\&&
 =z^{\max |E_b|_{E_b\in E_{NSHG}}~}.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&CENTER,E_2
 \end{eqnarray*}
  \begin{eqnarray*}
 && P:
 \\&&
 E_1,V^{EXTERNAL}_1,
 \\&&E_2,CENTER
 \end{eqnarray*}
be a longest path taken a connected Extreme SuperHyperStar $ESHS:(V,E).$  There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperList-Coloring. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM20a}
In the Figure \eqref{136NSHG20a}, the connected Extreme SuperHyperStar $ESHS:(V,E),$ is highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the  Extreme SuperHyperVertices of the connected Extreme SuperHyperStar $ESHS:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG20a}, is the  Extreme SuperHyperList-Coloring.
\begin{figure}
\includegraphics[width=100mm]{136NSHG20.png}
\caption{an Extreme SuperHyperStar Associated to the Extreme Notions of  Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM20a}}
\label{136NSHG20a}
\end{figure}
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperBipartite $ESHB:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
     \\&&      
          =\{E_1,E_2\}_{i=1}^{|P^{\max}_{NSHG}|}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
  \\&&
 =z^{|P^{\max}_{NSHG}|}.
 \\&&  
    \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
     \\&&
             =\{V^{EXTERNAL}_i\}_{V^{EXTERNAL}_i\in P_i\in\{P_a~|~ |P_a|=\max |P_b|_{P_b\in P_{NSHG}}~\}}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
  \\&&
 =z^{\max |P_b|_{P_b\in P_{NSHG}}~}.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
  \\&&\ldots,
  \\&&V^{EXTERNAL}_{|P_i|=\min_{P_j\in E_{NSHG}}|P_j|},E_{|P_i|=\min_{P_j\in E_{NSHG}}|P_j|}.
 \end{eqnarray*}
  \begin{eqnarray*}
 && P:
 \\&&
 E_1,V^{EXTERNAL}_1,
 \\&&E_2,V^{EXTERNAL}_2,
  \\&&\ldots,
  \\&&E_{|P_i|=\min_{P_j\in E_{NSHG}}|P_j|},V^{EXTERNAL}_{|P_i|=\min_{P_j\in E_{NSHG}}|P_j|}
 \end{eqnarray*}
  is a longest path taken from a connected   Extreme SuperHyperBipartite $ESHB:(V,E).$
 There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperList-Coloring. The latter is straightforward. Then there's no at least one SuperHyperList-Coloring. Thus the notion of quasi may be up but the SuperHyperNotions based on SuperHyperList-Coloring could be applied. There are only two SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the representative in the
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 is a longest SuperHyperList-Coloring taken from a connected Extreme SuperHyperBipartite $ESHB:(V,E).$ Thus only some SuperHyperVertices and only minimum-Extreme-of-SuperHyperPart SuperHyperEdges are attained in any solution
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM21a}
In the Extreme Figure \eqref{136NSHG21a}, the connected Extreme SuperHyperBipartite $ESHB:(V,E),$ is Extreme highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Extreme Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperBipartite $ESHB:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG21a}, is the Extreme  SuperHyperList-Coloring.
\begin{figure}
\includegraphics[width=100mm]{136NSHG21.png}
\caption{Extreme SuperHyperBipartite Extreme Associated to the Extreme Notions of  Extreme SuperHyperList-Coloring in the Example \eqref{136EXM21a}}
\label{136NSHG21a}
\end{figure}
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperMultipartite $ESHM:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
     \\&&      
          =\{E_1,E_2\}_{i=1}^{|P^{\max}_{NSHG}|}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
  \\&&
 =z^{|P^{\max}_{NSHG}|}.
 \\&&  
    \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
     \\&&
             =\{V^{EXTERNAL}_i\}_{V^{EXTERNAL}_i\in P_i\in\{P_a~|~ |P_a|=\max |P_b|_{P_b\in P_{NSHG}}~\}}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
  \\&&
 =z^{\max |P_b|_{P_b\in P_{NSHG}}~}.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
  \\&&\ldots,
  \\&&V^{EXTERNAL}_{|P_i|=\min_{P_j\in E_{NSHG}}|P_j|},E_{|P_i|=\min_{P_j\in E_{NSHG}}|P_j|}.
 \end{eqnarray*}
  \begin{eqnarray*}
 && P:
 \\&&
 E_1,V^{EXTERNAL}_1,
 \\&&E_2,V^{EXTERNAL}_2,
  \\&&\ldots,
  \\&&E_{|P_i|=\min_{P_j\in E_{NSHG}}|P_j|},V^{EXTERNAL}_{|P_i|=\min_{P_j\in E_{NSHG}}|P_j|}
 \end{eqnarray*}
 is a longest SuperHyperList-Coloring taken from a connected Extreme SuperHyperMultipartite $ESHM:(V,E).$  There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperList-Coloring. The latter is straightforward.  Then there's no at least one SuperHyperList-Coloring. Thus the notion of quasi may be up but the SuperHyperNotions based on SuperHyperList-Coloring could be applied. There are only $z'$ SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the representative in the  
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperMultipartite $ESHM:(V,E).$ Thus only some SuperHyperVertices and only minimum-Extreme-of-SuperHyperPart SuperHyperEdges are attained in any solution
    \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperMultipartite $ESHM:(V,E).$ The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM22a}
In the Figure \eqref{136NSHG22a}, the connected Extreme SuperHyperMultipartite $ESHM:(V,E),$ is highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperMultipartite $ESHM:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG22a}, is the  Extreme SuperHyperList-Coloring.
\begin{figure}
\includegraphics[width=100mm]{136NSHG22.png}
\caption{an Extreme  SuperHyperMultipartite Associated to the Notions of  Extreme SuperHyperList-Coloring in the Example \eqref{136EXM22a}}
\label{136NSHG22a}
\end{figure}
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperWheel $ESHW:(V,E).$ Then,
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme List-Coloring}}
     \\&&      
          =\{E^{*}_i\}_{i=1}^{|E^{*}_{NSHG}|}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme List-Coloring SuperHyperPolynomial}}
  \\&&
 =z^{|E^{*}_{NSHG}|}.
 \\&&  
    \mathcal{C}(NSHG)_{\text{Extreme V-List-Coloring}}
     \\&&
             =\{V^{EXTERNAL}_i\}_{V^{EXTERNAL}_i\in E^{*}_i\in\{E^{*}_a~|~ |E^{*}_a|=\max |E^{*}_b|_{E^{*}_b\in E^{*}_{NSHG}}~\}}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme V-List-Coloring SuperHyperPolynomial}}}
  \\&&
 =z^{\max |E^{*}_b|_{E^{*}_b\in E^{*}_{NSHG}}~}.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E^{*}_1,
 \\&&CENTER,E^{*}_2
 \end{eqnarray*}
  \begin{eqnarray*}
 && P:
 \\&&
 E^{*}_1,V^{EXTERNAL}_1,
 \\&&E^{*}_2,CENTER
 \end{eqnarray*}
  is a longest SuperHyperList-Coloring taken from a connected Extreme SuperHyperWheel $ESHW:(V,E).$
 There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperList-Coloring. The latter is straightforward. Then there's at least one SuperHyperList-Coloring. Thus the notion of quasi isn't up and the SuperHyperNotions based on SuperHyperList-Coloring could be applied. The unique embedded SuperHyperList-Coloring proposes some longest SuperHyperList-Coloring excerpt from some representatives. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM23a}
In the Extreme Figure \eqref{136NSHG23a}, the connected Extreme SuperHyperWheel $NSHW:(V,E),$ is Extreme highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperWheel $ESHW:(V,E),$
in the Extreme SuperHyperModel \eqref{136NSHG23a}, is the  Extreme SuperHyperList-Coloring.
\begin{figure}
\includegraphics[width=100mm]{136NSHG23.png}
\caption{an Extreme SuperHyperWheel Extreme Associated to the Extreme Notions of  Extreme SuperHyperList-Coloring in the Extreme Example \eqref{136EXM23a}}
\label{136NSHG23a}
\end{figure}
            \end{example}
\section{The Surveys of Mathematical Sets On The Results But As The Initial Motivation}
For the SuperHyperList-Coloring,  Extreme SuperHyperList-Coloring, and the Extreme SuperHyperList-Coloring, some general results are introduced.
\begin{remark}
 Let remind that the Extreme SuperHyperList-Coloring is ``redefined'' on the positions of the alphabets.
\end{remark}
\begin{corollary}
 Assume Extreme SuperHyperList-Coloring. Then
 \begin{eqnarray*}
&& Extreme ~SuperHyperList-Coloring=\\&&\{the   SuperHyperList-Coloring of the SuperHyperVertices ~|~\\&&\max|SuperHyperOffensive \\&&SuperHyperList-Coloring
\\&&
|_{Extreme cardinality amid those SuperHyperList-Coloring.}\}
  \end{eqnarray*}
plus one Extreme SuperHypeNeighbor to one. Where $\sigma_i$ is the unary operation on the SuperHyperVertices of the SuperHyperGraph to assign the determinacy, the indeterminacy and the neutrality, for $i=1,2,3,$ respectively.

\end{corollary}
\begin{corollary}
Assume an Extreme SuperHyperGraph on the same identical letter of the alphabet. Then the notion of Extreme SuperHyperList-Coloring and SuperHyperList-Coloring coincide.
\end{corollary}
\begin{corollary}
Assume an Extreme SuperHyperGraph on the same identical letter of the alphabet. Then a consecutive sequence of the SuperHyperVertices is an Extreme SuperHyperList-Coloring if and only if it's a SuperHyperList-Coloring.
\end{corollary}
\begin{corollary}
Assume an Extreme SuperHyperGraph on the same identical letter of the alphabet. Then a consecutive sequence of the SuperHyperVertices is a strongest SuperHyperList-Coloring if and only if it's a longest SuperHyperList-Coloring.
\end{corollary}
\begin{corollary}
Assume SuperHyperClasses of an Extreme SuperHyperGraph on the same identical letter of the alphabet. Then its Extreme SuperHyperList-Coloring is its SuperHyperList-Coloring and reversely.
\end{corollary}
\begin{corollary}
Assume an Extreme SuperHyperPath(-/SuperHyperList-Coloring, SuperHyperStar, SuperHyperBipartite, SuperHyperMultipartite,  SuperHyperWheel) on the same identical letter of the alphabet. Then its Extreme SuperHyperList-Coloring is its SuperHyperList-Coloring and reversely.
\end{corollary}
\begin{corollary}
 Assume an Extreme SuperHyperGraph. Then its Extreme SuperHyperList-Coloring isn't well-defined if and only if its SuperHyperList-Coloring isn't well-defined.
\end{corollary}
\begin{corollary}
 Assume SuperHyperClasses of an Extreme SuperHyperGraph. Then its Extreme SuperHyperList-Coloring isn't well-defined if and only if its SuperHyperList-Coloring isn't well-defined.
\end{corollary}
\begin{corollary}
Assume an Extreme SuperHyperPath(-/SuperHyperList-Coloring, SuperHyperStar, SuperHyperBipartite, SuperHyperMultipartite,  SuperHyperWheel). Then its Extreme SuperHyperList-Coloring isn't well-defined if and only if its SuperHyperList-Coloring isn't well-defined.
\end{corollary}
\begin{corollary}
 Assume an Extreme SuperHyperGraph. Then its Extreme SuperHyperList-Coloring is well-defined if and only if its SuperHyperList-Coloring is well-defined.
\end{corollary}
\begin{corollary}
 Assume SuperHyperClasses of an Extreme SuperHyperGraph. Then its Extreme SuperHyperList-Coloring is well-defined if and only if its SuperHyperList-Coloring is well-defined.
\end{corollary}
\begin{corollary}
Assume an Extreme SuperHyperPath(-/SuperHyperList-Coloring, SuperHyperStar, SuperHyperBipartite, SuperHyperMultipartite,  SuperHyperWheel). Then its Extreme SuperHyperList-Coloring is well-defined if and only if its SuperHyperList-Coloring is well-defined.
\end{corollary}

%

\begin{proposition}
Let $ESHG:(V,E)$  be an Extreme SuperHyperGraph. Then $V$ is
\begin{itemize}
 \item[$(i):$]  the dual SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii):$]  the strong dual SuperHyperDefensive SuperHyperList-Coloring;
    \item[$(iii):$]  the connected dual SuperHyperDefensive SuperHyperList-Coloring;
      \item[$(iv):$]  the $\delta$-dual SuperHyperDefensive SuperHyperList-Coloring;
        \item[$(v):$]  the strong $\delta$-dual SuperHyperDefensive SuperHyperList-Coloring;
          \item[$(vi):$]  the connected $\delta$-dual SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
Let $NTG:(V,E,\sigma,\mu)$  be an Extreme SuperHyperGraph. Then $\emptyset$ is
\begin{itemize}
 \item[$(i):$] the SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii):$]  the strong SuperHyperDefensive SuperHyperList-Coloring;
    \item[$(iii):$]  the connected defensive SuperHyperDefensive SuperHyperList-Coloring;
      \item[$(iv):$]  the $\delta$-SuperHyperDefensive SuperHyperList-Coloring;
        \item[$(v):$]  the strong $\delta$-SuperHyperDefensive SuperHyperList-Coloring;
          \item[$(vi):$]  the connected $\delta$-SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
Let $ESHG:(V,E)$ be an Extreme SuperHyperGraph. Then an independent SuperHyperSet is
\begin{itemize}
 \item[$(i):$] the SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii):$]  the strong SuperHyperDefensive SuperHyperList-Coloring;
    \item[$(iii):$]  the connected SuperHyperDefensive SuperHyperList-Coloring;
      \item[$(iv):$]  the $\delta$-SuperHyperDefensive SuperHyperList-Coloring;
        \item[$(v):$]  the strong $\delta$-SuperHyperDefensive SuperHyperList-Coloring;
          \item[$(vi):$]  the connected $\delta$-SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}

\begin{proposition}
Let $ESHG:(V,E)$ be an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperList-Coloring/SuperHyperPath. Then $V$ is a maximal
\begin{itemize}
 \item[$(i):$] SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii):$]  strong SuperHyperDefensive SuperHyperList-Coloring;
    \item[$(iii):$]  connected SuperHyperDefensive SuperHyperList-Coloring;
      \item[$(iv):$]  $\mathcal{O}(ESHG)$-SuperHyperDefensive SuperHyperList-Coloring;
        \item[$(v):$]  strong $\mathcal{O}(ESHG)$-SuperHyperDefensive SuperHyperList-Coloring;
          \item[$(vi):$]  connected $\mathcal{O}(ESHG)$-SuperHyperDefensive SuperHyperList-Coloring;
\end{itemize}
Where the exterior SuperHyperVertices and the interior SuperHyperVertices coincide.
\end{proposition}
\begin{proposition}
Let $ESHG:(V,E)$ be an Extreme SuperHyperGraph which is a  SuperHyperUniform SuperHyperWheel. Then $V$ is a maximal
\begin{itemize}
 \item[$(i):$] dual SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii):$]  strong dual SuperHyperDefensive SuperHyperList-Coloring;
    \item[$(iii):$]  connected dual SuperHyperDefensive SuperHyperList-Coloring;
      \item[$(iv):$]  $\mathcal{O}(ESHG)$-dual SuperHyperDefensive SuperHyperList-Coloring;
        \item[$(v):$]  strong $\mathcal{O}(ESHG)$-dual SuperHyperDefensive SuperHyperList-Coloring;
          \item[$(vi):$]  connected $\mathcal{O}(ESHG)$-dual SuperHyperDefensive SuperHyperList-Coloring;
\end{itemize}
Where the exterior SuperHyperVertices and the interior SuperHyperVertices coincide.
\end{proposition}

\begin{proposition}
Let $ESHG:(V,E)$ be an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperList-Coloring/SuperHyperPath. Then the number of
\begin{itemize}
 \item[$(i):$] the SuperHyperList-Coloring;
  \item[$(ii):$] the SuperHyperList-Coloring;
    \item[$(iii):$]  the connected SuperHyperList-Coloring;
      \item[$(iv):$]  the $\mathcal{O}(ESHG)$-SuperHyperList-Coloring;
        \item[$(v):$]  the strong $\mathcal{O}(ESHG)$-SuperHyperList-Coloring;
          \item[$(vi):$]  the connected $\mathcal{O}(ESHG)$-SuperHyperList-Coloring.
\end{itemize}
is one and it's only $V.$ Where the exterior SuperHyperVertices and the interior SuperHyperVertices coincide.
\end{proposition}
\begin{proposition}
Let $ESHG:(V,E)$ be an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperWheel. Then the number of
\begin{itemize}
 \item[$(i):$] the dual SuperHyperList-Coloring;
  \item[$(ii):$] the dual  SuperHyperList-Coloring;
    \item[$(iii):$]  the dual connected SuperHyperList-Coloring;
      \item[$(iv):$]  the dual $\mathcal{O}(ESHG)$-SuperHyperList-Coloring;
        \item[$(v):$]  the strong dual $\mathcal{O}(ESHG)$-SuperHyperList-Coloring;
          \item[$(vi):$]  the connected dual $\mathcal{O}(ESHG)$-SuperHyperList-Coloring.
\end{itemize}
is one and it's only $V.$ Where the exterior SuperHyperVertices and the interior SuperHyperVertices coincide.
\end{proposition}
\begin{proposition}
Let $ESHG:(V,E)$ be an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperStar/SuperHyperComplete SuperHyperBipartite/SuperHyperComplete SuperHyperMultipartite. Then a SuperHyperSet contains [the SuperHyperCenter and] the half of multiplying $r$ with the number of all the SuperHyperEdges plus one of all the SuperHyperVertices is a
\begin{itemize}
 \item[$(i):$] dual SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii):$]  strong dual SuperHyperDefensive SuperHyperList-Coloring;
    \item[$(iii):$]  connected dual SuperHyperDefensive SuperHyperList-Coloring;
      \item[$(iv):$]  $\frac{\mathcal{O}(ESHG)}{2}+1$-dual SuperHyperDefensive SuperHyperList-Coloring;
        \item[$(v):$]  strong $\frac{\mathcal{O}(ESHG)}{2}+1$-dual SuperHyperDefensive SuperHyperList-Coloring;
          \item[$(vi):$]  connected $\frac{\mathcal{O}(ESHG)}{2}+1$-dual SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
Let $ESHG:(V,E)$ be an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperStar/SuperHyperComplete SuperHyperBipartite/SuperHyperComplete SuperHyperMultipartite. Then a SuperHyperSet contains the half of multiplying $r$ with the number of all the SuperHyperEdges plus one of all the SuperHyperVertices in the biggest SuperHyperPart is a
\begin{itemize}
 \item[$(i):$]
 SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii):$]  strong  SuperHyperDefensive SuperHyperList-Coloring;
    \item[$(iii):$]  connected  SuperHyperDefensive SuperHyperList-Coloring;
      \item[$(iv):$]  $\delta$-SuperHyperDefensive SuperHyperList-Coloring;
        \item[$(v):$]  strong $\delta$-SuperHyperDefensive SuperHyperList-Coloring;
          \item[$(vi):$]  connected $\delta$-SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}

\begin{proposition}
Let $ESHG:(V,E)$ be an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperStar/SuperHyperComplete SuperHyperBipartite/SuperHyperComplete SuperHyperMultipartite. Then Then the number of \begin{itemize}
 \item[$(i):$] dual SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii):$]  strong dual SuperHyperDefensive SuperHyperList-Coloring;
    \item[$(iii):$]  connected dual SuperHyperDefensive SuperHyperList-Coloring;
      \item[$(iv):$]  $\frac{\mathcal{O}(ESHG)}{2}+1$-dual SuperHyperDefensive SuperHyperList-Coloring;
        \item[$(v):$]  strong $\frac{\mathcal{O}(ESHG)}{2}+1$-dual SuperHyperDefensive SuperHyperList-Coloring;
          \item[$(vi):$]  connected $\frac{\mathcal{O}(ESHG)}{2}+1$-dual SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
is one and it's only $S,$ a SuperHyperSet contains [the SuperHyperCenter and] the half of multiplying $r$ with the number of all the SuperHyperEdges plus one of all the SuperHyperVertices. Where the exterior SuperHyperVertices and the interior SuperHyperVertices coincide.
\end{proposition}
\begin{proposition}
Let $ESHG:(V,E)$  be an Extreme SuperHyperGraph. The number of connected component is $|V-S|$ if there's a SuperHyperSet which is a dual
\begin{itemize}
 \item[$(i):$]  SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii):$]  strong SuperHyperDefensive SuperHyperList-Coloring;
    \item[$(iii):$] connected SuperHyperDefensive SuperHyperList-Coloring;
      \item[$(iv):$]  SuperHyperList-Coloring;
        \item[$(v):$]  strong 1-SuperHyperDefensive SuperHyperList-Coloring;
          \item[$(vi):$]  connected 1-SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
Let $ESHG:(V,E)$  be an Extreme SuperHyperGraph. Then the number is at most $\mathcal{O}(ESHG)$ and  the Extreme number is at most $\mathcal{O}_n(ESHG).$
\end{proposition}
\begin{proposition}
Let $ESHG:(V,E)$  be an Extreme SuperHyperGraph which is SuperHyperComplete. The number is $\frac{\mathcal{O}(ESHG:(V,E))}{2}+1$ and  the Extreme number is $\min\Sigma_{v\in\{v_1,v_2,\cdots,v_t\}_{t>\frac{\mathcal{O}(ESHG:(V,E))}{2}}\subseteq V}\sigma(v),$ in the setting of dual
\begin{itemize}
 \item[$(i):$]
 SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii):$] strong
  SuperHyperDefensive SuperHyperList-Coloring;
    \item[$(iii):$] connected SuperHyperDefensive SuperHyperList-Coloring;
      \item[$(iv):$]  $(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1)$-SuperHyperDefensive SuperHyperList-Coloring;
        \item[$(v):$]  strong $(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1)$-SuperHyperDefensive SuperHyperList-Coloring;
          \item[$(vi):$]  connected $(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1)$-SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
Let $ESHG:(V,E)$ be an Extreme SuperHyperGraph which is $\emptyset.$ The number is  $0$ and  the Extreme number is $0,$ for an independent SuperHyperSet in the setting of dual
\begin{itemize}
 \item[$(i):$] SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii):$]  strong  SuperHyperDefensive SuperHyperList-Coloring;
    \item[$(iii):$] connected  SuperHyperDefensive SuperHyperList-Coloring;
      \item[$(iv):$]  $0$-SuperHyperDefensive SuperHyperList-Coloring;
        \item[$(v):$]  strong $0$-SuperHyperDefensive SuperHyperList-Coloring;
          \item[$(vi):$]  connected $0$-SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}

\begin{proposition}
 Let $ESHG:(V,E)$ be an Extreme SuperHyperGraph which is SuperHyperComplete. Then there's no independent SuperHyperSet.
\end{proposition}

\begin{proposition}
Let $ESHG:(V,E)$ be an Extreme SuperHyperGraph which is SuperHyperList-Coloring/SuperHyperPath/SuperHyperWheel. The number is  $\mathcal{O}(ESHG:(V,E))$ and  the Extreme number is $\mathcal{O}_n(ESHG:(V,E)),$ in the setting of a dual
\begin{itemize}
 \item[$(i):$]  SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii):$]  strong  SuperHyperDefensive SuperHyperList-Coloring;
    \item[$(iii):$] connected  SuperHyperDefensive SuperHyperList-Coloring;
      \item[$(iv):$]  $\mathcal{O}(ESHG:(V,E))$-SuperHyperDefensive SuperHyperList-Coloring;
        \item[$(v):$]  strong $\mathcal{O}(ESHG:(V,E))$-SuperHyperDefensive SuperHyperList-Coloring;
          \item[$(vi):$]  connected $\mathcal{O}(ESHG:(V,E))$-SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}

\begin{proposition}
Let $ESHG:(V,E)$  be an Extreme SuperHyperGraph which is SuperHyperStar/complete SuperHyperBipartite/complete SuperHyperMultiPartite. The number is  $\frac{\mathcal{O}(ESHG:(V,E))}{2}+1$ and  the Extreme number is $\min\Sigma_{v\in\{v_1,v_2,\cdots,v_t\}_{t>\frac{\mathcal{O}(ESHG:(V,E))}{2}}\subseteq V}\sigma(v),$ in the setting of a dual
\begin{itemize}
 \item[$(i):$]  SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii):$]  strong  SuperHyperDefensive SuperHyperList-Coloring;
    \item[$(iii):$] connected  SuperHyperDefensive SuperHyperList-Coloring;
      \item[$(iv):$]  $(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1)$-SuperHyperDefensive SuperHyperList-Coloring;
        \item[$(v):$]  strong $(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1)$-SuperHyperDefensive SuperHyperList-Coloring;
          \item[$(vi):$]  connected $(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1)$-SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
 Let $\mathcal{NSHF}:(V,E)$ be a SuperHyperFamily of the $ESHGs:(V,E)$ Extreme SuperHyperGraphs which are from one-type SuperHyperClass which the result is obtained for the individuals. Then the results also hold for the SuperHyperFamily $\mathcal{NSHF}:(V,E)$ of these specific SuperHyperClasses of the  Extreme SuperHyperGraphs.
\end{proposition}
%
\begin{proposition}
  Let $ESHG:(V,E)$  be a strong Extreme SuperHyperGraph. If $S$ is a dual SuperHyperDefensive SuperHyperList-Coloring, then $\forall v\in V\setminus S,~\exists x\in S$ such that
   \begin{itemize}
\item[$(i)$]
$v\in N_s(x);$
\item[$(ii)$]
$vx\in E.$
\end{itemize}
\end{proposition}
\begin{proposition}
   Let $ESHG:(V,E)$  be a strong Extreme SuperHyperGraph. If $S$ is a dual SuperHyperDefensive SuperHyperList-Coloring, then
    \begin{itemize}
\item[$(i)$]
$S$ is SuperHyperList-Coloring set;
\item[$(ii)$]
there's $S\subseteq S'$ such that $|S'|$ is SuperHyperChromatic number.
\end{itemize}
\end{proposition}
\begin{proposition}
  Let $ESHG:(V,E)$  be a strong Extreme SuperHyperGraph. Then
      \begin{itemize}
\item[$(i)$]
$\Gamma\leq\mathcal{O};$
\item[$(ii)$]
$\Gamma_s\leq\mathcal{O}_n.$
\end{itemize}
\end{proposition}
\begin{proposition}
  Let $ESHG:(V,E)$  be a strong Extreme SuperHyperGraph which is connected. Then
      \begin{itemize}
\item[$(i)$]
$\Gamma\leq\mathcal{O}-1;$
\item[$(ii)$]
$\Gamma_s\leq\mathcal{O}_n-\Sigma_{i=1}^{3}\sigma_i(x).$
\end{itemize}
\end{proposition}

\begin{proposition}
  Let $ESHG:(V,E)$  be an odd SuperHyperPath. Then
 \begin{itemize}
\item[$(i)$]
the SuperHyperSet $S=\{v_2,v_4,\cdots,v_{n-1}\}$ is  a dual SuperHyperDefensive SuperHyperList-Coloring;
\item[$(ii)$]
 $\Gamma=\lfloor\frac{n}{2}\rfloor+1$ and corresponded SuperHyperSet is $S=\{v_2,v_4,\cdots,v_{n-1}\}$;
\item[$(iii)$]
$\Gamma_s=\min\{\Sigma_{s\in S=\{v_2,v_4,\cdots,v_{n-1}\}}\Sigma_{i=1}^3\sigma_i(s), \Sigma_{s\in S=\{v_1,v_3,\cdots,v_{n-1}\}}\Sigma_{i=1}^3\sigma_i(s)\};$
\item[$(iv)$]
the SuperHyperSets $S_1=\{v_2,v_4,\cdots,v_{n-1}\}$ and $S_2=\{v_1,v_3,\cdots,v_{n-1}\}$ are only a dual SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
  Let $ESHG:(V,E)$  be an even SuperHyperPath. Then
 \begin{itemize}
\item[$(i)$]
the set $S=\{v_2,v_4,\cdots.v_{n}\}$ is  a dual SuperHyperDefensive SuperHyperList-Coloring;
\item[$(ii)$]
 $\Gamma=\lfloor\frac{n}{2}\rfloor$ and corresponded SuperHyperSets are $\{v_2,v_4,\cdots.v_n\}$ and $\{v_1,v_3,\cdots.v_{n-1}\};$
\item[$(iii)$]
$\Gamma_s=\min\{\Sigma_{s\in S=\{v_2,v_4,\cdots,v_n\}}\Sigma_{i=1}^3\sigma_i(s), \Sigma_{s\in S=\{v_1,v_3,\cdots.v_{n-1}\}}\Sigma_{i=1}^3\sigma_i(s)\};$
\item[$(iv)$]
the SuperHyperSets $S_1=\{v_2,v_4,\cdots.v_{n}\}$ and $S_2=\{v_1,v_3,\cdots.v_{n-1}\}$ are only dual SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
  Let $ESHG:(V,E)$  be an even SuperHyperList-Coloring. Then
 \begin{itemize}
\item[$(i)$]
the SuperHyperSet $S=\{v_2,v_4,\cdots,v_{n}\}$ is  a dual SuperHyperDefensive SuperHyperList-Coloring;
\item[$(ii)$]
 $\Gamma=\lfloor\frac{n}{2}\rfloor$ and corresponded SuperHyperSets are $\{v_2,v_4,\cdots,v_n\}$ and $\{v_1,v_3,\cdots,v_{n-1}\};$
\item[$(iii)$]
$\Gamma_s=\min\{\Sigma_{s\in S=\{v_2,v_4,\cdots,v_n\}}\sigma(s), \Sigma_{s\in S=\{v_1,v_3,\cdots,v_{n-1}\}}\sigma(s)\};$
\item[$(iv)$]
the SuperHyperSets $S_1=\{v_2,v_4,\cdots,v_{n}\}$ and $S_2=\{v_1,v_3,\cdots,v_{n-1}\}$ are only dual  SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
  Let $ESHG:(V,E)$  be an odd SuperHyperList-Coloring. Then
 \begin{itemize}
\item[$(i)$]
the SuperHyperSet $S=\{v_2,v_4,\cdots,v_{n-1}\}$ is  a  dual  SuperHyperDefensive SuperHyperList-Coloring;
\item[$(ii)$]
 $\Gamma=\lfloor\frac{n}{2}\rfloor+1$ and corresponded SuperHyperSet is $S=\{v_2,v_4,\cdots,v_{n-1}\}$;
\item[$(iii)$]
$\Gamma_s=\min\{\Sigma_{s\in S=\{v_2,v_4,\cdots.v_{n-1}\}}\Sigma_{i=1}^3\sigma_i(s), \Sigma_{s\in S=\{v_1,v_3,\cdots.v_{n-1}\}}\Sigma_{i=1}^3\sigma_i(s)\};$
\item[$(iv)$]
the SuperHyperSets $S_1=\{v_2,v_4,\cdots.v_{n-1}\}$ and $S_2=\{v_1,v_3,\cdots.v_{n-1}\}$ are only dual SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
  Let $ESHG:(V,E)$  be SuperHyperStar. Then
 \begin{itemize}
\item[$(i)$]
the SuperHyperSet $S=\{c\}$ is  a dual maximal SuperHyperList-Coloring;
\item[$(ii)$]
$\Gamma=1;$
\item[$(iii)$]
$\Gamma_s=\Sigma_{i=1}^3\sigma_i(c);$
\item[$(iv)$]
the SuperHyperSets $S=\{c\}$ and $S\subset S'$ are only dual SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
  Let $ESHG:(V,E)$  be SuperHyperWheel. Then
 \begin{itemize}
\item[$(i)$]
the SuperHyperSet $S=\{v_1,v_3\}\cup\{v_6,v_9\cdots,v_{i+6},\cdots,v_n\}_{i=1}^{6+3(i-1)\leq n}$ is a dual maximal  SuperHyperDefensive SuperHyperList-Coloring;
\item[$(ii)$]
$\Gamma=|\{v_1,v_3\}\cup\{v_6,v_9\cdots,v_{i+6},\cdots,v_n\}_{i=1}^{6+3(i-1)\leq n}|;$
\item[$(iii)$]
$\Gamma_s=\Sigma_{\{v_1,v_3\}\cup\{v_6,v_9\cdots,v_{i+6},\cdots,v_n\}_{i=1}^{6+3(i-1)\leq n}}\Sigma_{i=1}^3\sigma_i(s);$
\item[$(iv)$]
the SuperHyperSet $\{v_1,v_3\}\cup\{v_6,v_9\cdots,v_{i+6},\cdots,v_n\}_{i=1}^{6+3(i-1)\leq n}$ is only a dual maximal  SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
  Let $ESHG:(V,E)$  be an odd SuperHyperComplete. Then
 \begin{itemize}
\item[$(i)$]
the SuperHyperSet $S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor+1}$ is  a dual SuperHyperDefensive SuperHyperList-Coloring;
\item[$(ii)$]
$\Gamma=\lfloor\frac{n}{2}\rfloor+1;$
\item[$(iii)$]
$\Gamma_s=\min\{\Sigma_{s\in S}\Sigma_{i=1}^3\sigma_i(s)\}_{S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor+1}};$
\item[$(iv)$]
the SuperHyperSet $S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor+1}$ is only a dual  SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}


\begin{proposition}
  Let $ESHG:(V,E)$  be an even SuperHyperComplete. Then
 \begin{itemize}
\item[$(i)$]
the SuperHyperSet $S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor}$ is a dual SuperHyperDefensive SuperHyperList-Coloring;
\item[$(ii)$]
$\Gamma=\lfloor\frac{n}{2}\rfloor;$
\item[$(iii)$]
$\Gamma_s=\min\{\Sigma_{s\in S}\Sigma_{i=1}^3\sigma_i(s)\}_{S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor}};$
\item[$(iv)$]
the SuperHyperSet $S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor}$ is only a dual maximal SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
  Let $\mathcal{NSHF}:(V,E)$ be a $m$-SuperHyperFamily of Extreme SuperHyperStars with common Extreme SuperHyperVertex SuperHyperSet. Then
 \begin{itemize}
\item[$(i)$]
the SuperHyperSet $S=\{c_1,c_2,\cdots,c_m\}$ is  a dual SuperHyperDefensive SuperHyperList-Coloring for $\mathcal{NSHF};$
\item[$(ii)$]
$\Gamma=m$ for $\mathcal{NSHF}:(V,E);$
\item[$(iii)$]
$\Gamma_s=\Sigma_{i=1}^m\Sigma_{j=1}^3\sigma_j(c_i)$ for $\mathcal{NSHF}:(V,E);$
\item[$(iv)$]
the SuperHyperSets $S=\{c_1,c_2,\cdots,c_m\}$ and $S\subset S'$ are only dual  SuperHyperList-Coloring for $\mathcal{NSHF}:(V,E).$
\end{itemize}
\end{proposition}
\begin{proposition}
  Let $\mathcal{NSHF}:(V,E)$ be an $m$-SuperHyperFamily of odd SuperHyperComplete SuperHyperGraphs with common Extreme SuperHyperVertex SuperHyperSet. Then
\begin{itemize}
\item[$(i)$]
the SuperHyperSet $S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor+1}$ is  a dual maximal SuperHyperDefensive SuperHyperList-Coloring for $\mathcal{NSHF};$
\item[$(ii)$]
$\Gamma=\lfloor\frac{n}{2}\rfloor+1$ for $\mathcal{NSHF}:(V,E);$
\item[$(iii)$]
$\Gamma_s=\min\{\Sigma_{s\in S}\Sigma_{i=1}^3\sigma_i(s)\}_{S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor+1}}$ for $\mathcal{NSHF}:(V,E);$
\item[$(iv)$]
the SuperHyperSets $S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor+1}$ are only a dual maximal SuperHyperList-Coloring for $\mathcal{NSHF}:(V,E).$
\end{itemize}
\end{proposition}
\begin{proposition}
  Let $\mathcal{NSHF}:(V,E)$ be a $m$-SuperHyperFamily of even SuperHyperComplete SuperHyperGraphs with common Extreme SuperHyperVertex SuperHyperSet. Then
\begin{itemize}
\item[$(i)$]
the SuperHyperSet $S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor}$ is  a dual SuperHyperDefensive SuperHyperList-Coloring for $\mathcal{NSHF}:(V,E);$
\item[$(ii)$]
$\Gamma=\lfloor\frac{n}{2}\rfloor$ for $\mathcal{NSHF}:(V,E);$
\item[$(iii)$]
$\Gamma_s=\min\{\Sigma_{s\in S}\Sigma_{i=1}^3\sigma_i(s)\}_{S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor}}$ for $\mathcal{NSHF}:(V,E);$
\item[$(iv)$]
the SuperHyperSets $S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor}$ are only dual  maximal SuperHyperList-Coloring for $\mathcal{NSHF}:(V,E).$
\end{itemize}
\end{proposition}
\begin{proposition}
   Let $ESHG:(V,E)$ be a strong Extreme SuperHyperGraph. Then following statements hold;
\begin{itemize}
 \item[$(i)$] if $s\geq t$ and a SuperHyperSet $S$ of SuperHyperVertices is an t-SuperHyperDefensive SuperHyperList-Coloring, then $S$ is an s-SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii)$] if $s\leq t$ and a SuperHyperSet $S$ of SuperHyperVertices is a dual t-SuperHyperDefensive SuperHyperList-Coloring, then $S$ is a dual s-SuperHyperDefensive  SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
   Let $ESHG:(V,E)$  be a strong Extreme SuperHyperGraph. Then following statements hold;
\begin{itemize}
 \item[$(i)$] if $s\geq t+2$ and a SuperHyperSet $S$ of SuperHyperVertices is an t-SuperHyperDefensive  SuperHyperList-Coloring, then $S$ is an s-SuperHyperPowerful  SuperHyperList-Coloring;
  \item[$(ii)$] if $s\leq t$ and a SuperHyperSet $S$ of SuperHyperVertices is a dual t-SuperHyperDefensive SuperHyperList-Coloring, then $S$ is a dual s-SuperHyperPowerful  SuperHyperList-Coloring.
\end{itemize}
\end{proposition}

\begin{proposition}
   Let $ESHG:(V,E)$  be a[an] [V-]SuperHyperUniform-strong-Extreme SuperHyperGraph. Then following statements hold;
\begin{itemize}
 \item[$(i)$] if $\forall a\in S,~|N_s(a)\cap S|< \lfloor \frac{r}{2}\rfloor+1,$ then $ESHG:(V,E)$ is an 2-SuperHyperDefensive SuperHyperList-Coloring;
  \item[$(ii)$]  if $\forall a\in V\setminus S,~|N_s(a)\cap S|> \lfloor \frac{r}{2}\rfloor+1,$ then $ESHG:(V,E)$ is a dual 2-SuperHyperDefensive SuperHyperList-Coloring;
   \item[$(iii)$] if $\forall a\in S,~|N_s(a)\cap V\setminus S|=0,$ then $ESHG:(V,E)$ is an V-SuperHyperDefensive  SuperHyperList-Coloring;
     \item[$(iv)$]  if $\forall a\in V\setminus S,~|N_s(a)\cap V\setminus S|=0,$ then $ESHG:(V,E)$ is a dual V-SuperHyperDefensive SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
   Let $ESHG:(V,E)$ is a[an] [V-]SuperHyperUniform-strong-Extreme SuperHyperGraph. Then following statements hold;
\begin{itemize}
 \item[$(i)$] $\forall a\in S,~|N_s(a)\cap S|< \lfloor \frac{r}{2}\rfloor+1$ if $ESHG:(V,E)$ is an 2-SuperHyperDefensive  SuperHyperList-Coloring;
  \item[$(ii)$]  $\forall a\in V\setminus S,~|N_s(a)\cap S|> \lfloor \frac{r}{2}\rfloor+1$ if $ESHG:(V,E)$ is a dual 2-SuperHyperDefensive  SuperHyperList-Coloring;
   \item[$(iii)$] $\forall a\in S,~|N_s(a)\cap V\setminus S|=0$ if $ESHG:(V,E)$ is an V-SuperHyperDefensive SuperHyperList-Coloring;
     \item[$(iv)$]  $\forall a\in V\setminus S,~|N_s(a)\cap V\setminus S|=0$ if $ESHG:(V,E)$ is a dual V-SuperHyperDefensive  SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
   Let $ESHG:(V,E)$ is a[an] [V-]SuperHyperUniform-strong-Extreme SuperHyperGraph which is a  SuperHyperComplete. Then following statements hold;
\begin{itemize}
 \item[$(i)$] $\forall a\in S,~|N_s(a)\cap S|< \lfloor \frac{\mathcal{O}-1}{2}\rfloor+1$ if $ESHG:(V,E)$ is an 2-SuperHyperDefensive  SuperHyperList-Coloring;
  \item[$(ii)$]  $\forall a\in V\setminus S,~|N_s(a)\cap S|> \lfloor \frac{\mathcal{O}-1}{2}\rfloor+1$ if $ESHG:(V,E)$ is a dual 2-SuperHyperDefensive  SuperHyperList-Coloring;
   \item[$(iii)$] $\forall a\in S,~|N_s(a)\cap V\setminus S|=0$ if $ESHG:(V,E)$ is an $(\mathcal{O}-1)$-SuperHyperDefensive  SuperHyperList-Coloring;
     \item[$(iv)$]  $\forall a\in V\setminus S,~|N_s(a)\cap V\setminus S|=0$ if $ESHG:(V,E)$ is a dual $(\mathcal{O}-1)$-SuperHyperDefensive  SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
   Let $ESHG:(V,E)$ is a[an] [V-]SuperHyperUniform-strong-Extreme SuperHyperGraph which is a SuperHyperComplete. Then following statements hold;
\begin{itemize}
 \item[$(i)$] if $\forall a\in S,~|N_s(a)\cap S|< \lfloor \frac{\mathcal{O}-1}{2}\rfloor+1,$ then $ESHG:(V,E)$ is an 2-SuperHyperDefensive  SuperHyperList-Coloring;
  \item[$(ii)$]  if $\forall a\in V\setminus S,~|N_s(a)\cap S|> \lfloor \frac{\mathcal{O}-1}{2}\rfloor+1,$ then $ESHG:(V,E)$ is a dual 2-SuperHyperDefensive  SuperHyperList-Coloring;
   \item[$(iii)$] if $\forall a\in S,~|N_s(a)\cap V\setminus S|=0,$ then $ESHG:(V,E)$ is $(\mathcal{O}-1)$-SuperHyperDefensive  SuperHyperList-Coloring;
     \item[$(iv)$]  if $\forall a\in V\setminus S,~|N_s(a)\cap V\setminus S|=0,$ then $ESHG:(V,E)$ is a dual $(\mathcal{O}-1)$-SuperHyperDefensive  SuperHyperList-Coloring.
\end{itemize}
\end{proposition}
\begin{proposition}
   Let $ESHG:(V,E)$ is a[an] [V-]SuperHyperUniform-strong-Extreme SuperHyperGraph which is SuperHyperList-Coloring. Then following statements hold;
\begin{itemize}
 \item[$(i)$] $\forall a\in S,~|N_s(a)\cap S|< 2$ if $ESHG:(V,E))$ is an 2-SuperHyperDefensive  SuperHyperList-Coloring;
  \item[$(ii)$]  $\forall a\in V\setminus S,~|N_s(a)\cap S|> 2$ if $ESHG:(V,E)$ is a dual 2-SuperHyperDefensive  SuperHyperList-Coloring;
   \item[$(iii)$] $\forall a\in S,~|N_s(a)\cap V\setminus S|=0$ if $ESHG:(V,E)$ is an 2-SuperHyperDefensive  SuperHyperList-Coloring;
     \item[$(iv)$]  $\forall a\in V\setminus S,~|N_s(a)\cap V\setminus S|=0$ if $ESHG:(V,E)$ is a dual 2-SuperHyperDefensive  SuperHyperList-Coloring.
\end{itemize}
\end{proposition}

\begin{proposition}
   Let $ESHG:(V,E)$ is a[an] [V-]SuperHyperUniform-strong-Extreme SuperHyperGraph which is SuperHyperList-Coloring. Then following statements hold;
\begin{itemize}
 \item[$(i)$] if $\forall a\in S,~|N_s(a)\cap S|< 2,$ then $ESHG:(V,E)$ is an 2-SuperHyperDefensive  SuperHyperList-Coloring;
  \item[$(ii)$]  if $\forall a\in V\setminus S,~|N_s(a)\cap S|> 2,$ then $ESHG:(V,E)$ is a dual 2-SuperHyperDefensive  SuperHyperList-Coloring;
   \item[$(iii)$] if $\forall a\in S,~|N_s(a)\cap V\setminus S|=0,$ then $ESHG:(V,E)$ is an 2-SuperHyperDefensive  SuperHyperList-Coloring;
     \item[$(iv)$]  if $\forall a\in V\setminus S,~|N_s(a)\cap V\setminus S|=0,$ then $ESHG:(V,E)$ is a dual 2-SuperHyperDefensive  SuperHyperList-Coloring.
\end{itemize}
\end{proposition}

            
 \section{Extreme Applications in Cancer's Extreme Recognition}
The cancer is the Extreme disease but the Extreme model is going to figure out what's going on this Extreme phenomenon. The special Extreme case of this Extreme disease is considered and as the consequences of the model, some parameters are used. The cells are under attack of this disease but the moves of the cancer in the special region are the matter of mind. The Extreme recognition of the cancer could help to find some Extreme treatments for this Extreme disease.
\\
In the following, some Extreme steps are Extreme devised on this disease.
\begin{description}
 \item[Step 1. (Extreme Definition)] The Extreme recognition of the cancer in the long-term Extreme function.
  \item[Step 2. (Extreme Issue)] The specific region has been assigned by the Extreme model [it's called Extreme SuperHyperGraph] and the long Extreme cycle of the move from the cancer is identified by this research. Sometimes the move of the cancer hasn't be easily identified since there are some determinacy, indeterminacy and neutrality about the moves and the effects of the cancer on that region; this event leads us to choose another model [it's said to be Extreme SuperHyperGraph] to have convenient perception on what's happened and what's done.
 \item[Step 3. (Extreme Model)]  
There are some specific Extreme models, which are well-known and they've got the names, and some general Extreme models. The moves and the Extreme traces of the cancer on the complex tracks and between complicated groups of cells could be fantasized by an Extreme SuperHyperPath(-/SuperHyperList-Coloring, SuperHyperStar, SuperHyperBipartite, SuperHyperMultipartite,  SuperHyperWheel). The aim is to find either the Extreme   SuperHyperList-Coloring or the Extreme   SuperHyperList-Coloring in those Extreme Extreme SuperHyperModels.
  \section{Case 1: The Initial Extreme Steps Toward Extreme SuperHyperBipartite as  Extreme SuperHyperModel}

 \item[Step 4. (Extreme Solution)]
In the Extreme Figure \eqref{136NSHGaa21aa}, the Extreme SuperHyperBipartite is Extreme highlighted and Extreme featured.
\begin{figure}
 \includegraphics[width=100mm]{136NSHG21.png}
 \caption{an Extreme  SuperHyperBipartite Associated to the Notions of   Extreme SuperHyperList-Coloring}
 \label{136NSHGaa21aa}
\end{figure}
\\ By using the Extreme Figure \eqref{136NSHGaa21aa} and the Table \eqref{136TBLaa21aa}, the Extreme SuperHyperBipartite is obtained.
\\
The obtained Extreme SuperHyperSet, by the Extreme Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperBipartite $ESHB:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHGaa21aa},
is the Extreme SuperHyperList-Coloring.
\begin{table}
\centering
\caption{The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Extreme SuperHyperBipartite}
\begin{tabular}[t]{c|c}
\hline
The Values of The Vertices & The Number of Position in Alphabet\\
\hline
The Values of The SuperVertices&The maximum Values of Its Vertices\\
\hline
The Values of The Edges&The maximum Values of Its Vertices\\
\hline
The Values of The HyperEdges&The maximum Values of Its Vertices\\
\hline
The Values of The SuperHyperEdges&The maximum Values of Its Endpoints \\
\hline
\end{tabular}
\label{136TBLaa21aa}
\end{table}
    \section{Case 2: The Increasing Extreme Steps Toward Extreme SuperHyperMultipartite as Extreme SuperHyperModel}

     \item[Step 4. (Extreme Solution)]
In the Extreme Figure \eqref{136NSHGaa22aa}, the Extreme SuperHyperMultipartite is Extreme highlighted and  Extreme featured.
\begin{figure}
 \includegraphics[width=100mm]{136NSHG22.png}
 \caption{an Extreme  SuperHyperMultipartite Associated to the Notions of   Extreme SuperHyperList-Coloring}
 \label{136NSHGaa22aa}
\end{figure}
\\
 By using the Extreme Figure \eqref{136NSHGaa22aa} and the Table \eqref{136TBLaa22aa}, the Extreme SuperHyperMultipartite is obtained.
 \\
 The obtained Extreme SuperHyperSet, by the Extreme Algorithm in previous result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperMultipartite $ESHM:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHGaa22aa}, is the  Extreme SuperHyperList-Coloring.
\begin{table}
\centering
\caption{The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Extreme SuperHyperMultipartite}
\begin{tabular}[t]{c|c}
\hline
The Values of The Vertices & The Number of Position in Alphabet\\
\hline
The Values of The SuperVertices&The maximum Values of Its Vertices\\
\hline
The Values of The Edges&The maximum Values of Its Vertices\\
\hline
The Values of The HyperEdges&The maximum Values of Its Vertices\\
\hline
The Values of The SuperHyperEdges&The maximum Values of Its Endpoints \\
\hline
\end{tabular}
\label{136TBLaa22aa}
\end{table}
     \end{description}
\section{Wondering Open Problems But As The Directions To Forming The Motivations}
In what follows, some ``problems'' and some ``questions'' are proposed.
\\
The   SuperHyperList-Coloring and the Extreme   SuperHyperList-Coloring are defined on a real-world application, titled ``Cancer's Recognitions''.
\begin{question}
Which the else SuperHyperModels could be defined based on Cancer's recognitions?
\end{question}
\begin{question}
Are there some SuperHyperNotions related to   SuperHyperList-Coloring and the Extreme   SuperHyperList-Coloring?
\end{question}
\begin{question}
Are there some Algorithms to be defined on the SuperHyperModels to compute them?
\end{question}
\begin{question}
Which the SuperHyperNotions are related to beyond the   SuperHyperList-Coloring and the Extreme   SuperHyperList-Coloring?
\end{question}
\begin{problem}
The   SuperHyperList-Coloring and the Extreme   SuperHyperList-Coloring do a SuperHyperModel for the Cancer's recognitions and they're based on   SuperHyperList-Coloring, are there else?
\end{problem}
\begin{problem}
Which the fundamental SuperHyperNumbers are related to these SuperHyperNumbers types-results?
\end{problem}
\begin{problem}
What's the independent research based on Cancer's recognitions concerning the multiple types of SuperHyperNotions?
\end{problem}
\section{Conclusion and  Closing Remarks}
In this section, concluding remarks and closing remarks are represented. The drawbacks of this research are illustrated. Some benefits and some advantages of this research are highlighted.
\\
This research uses some approaches to make Extreme SuperHyperGraphs more understandable. In this endeavor, two SuperHyperNotions are defined on the   SuperHyperList-Coloring. For that sake in the second definition, the main definition of the Extreme SuperHyperGraph is redefined on the position of the alphabets. Based on the new definition for the Extreme SuperHyperGraph, the new SuperHyperNotion, Extreme   SuperHyperList-Coloring, finds the convenient background to implement some results based on that. Some SuperHyperClasses and some Extreme SuperHyperClasses are the cases of this research on the modeling of the regions where are under the attacks of the cancer to recognize this disease as it's mentioned on the title ``Cancer's Recognitions''. To formalize the instances on the SuperHyperNotion,   SuperHyperList-Coloring, the new SuperHyperClasses and SuperHyperClasses, are introduced. Some general results are gathered in the section on the   SuperHyperList-Coloring and the Extreme   SuperHyperList-Coloring. The clarifications, instances and literature reviews have taken the whole way through. In this research, the literature reviews have fulfilled the lines containing the notions and the results. The SuperHyperGraph and Extreme SuperHyperGraph are the SuperHyperModels on the ``Cancer's Recognitions'' and both bases are the background of this research. Sometimes the cancer has been happened on the region, full of cells, groups of cells and embedded styles. In this segment, the SuperHyperModel proposes some SuperHyperNotions based on the connectivities of the moves of the cancer in the longest and strongest styles with the formation of the design and the architecture are formally called ``  SuperHyperList-Coloring'' in the themes of jargons and buzzwords. The prefix ``SuperHyper'' refers to the theme of the embedded styles to figure out the background for the SuperHyperNotions.
\begin{table}[ht]
\centering
\caption{An Overlook On This Research And Beyond}
\label{136TBLTBL}
\begin{tabular}[t]{|c|c|}
\hline
\textcolor{black}{Advantages}&\textcolor{black}{Limitations}\\
\hline
\textcolor{black}{1. }\textcolor{red}{Redefining  Extreme SuperHyperGraph} &\textcolor{black}{1. }\textcolor{blue}{General Results} \\  &
\\
 \textcolor{black}{2. }\textcolor{red}{  SuperHyperList-Coloring}& \\ &
\\
\textcolor{black}{3. } \textcolor{red}{Extreme   SuperHyperList-Coloring}  &\textcolor{black}{2. } \textcolor{blue}{Other SuperHyperNumbers}
\\&
\\
\textcolor{black}{4. }\textcolor{red}{Modeling of Cancer's Recognitions}    &  \\&
\\
\textcolor{black}{5. }\textcolor{red}{SuperHyperClasses}    &\textcolor{black}{3. }\textcolor{blue}{SuperHyperFamilies}   \\
\hline
\end{tabular}
\end{table}
In the Table \eqref{136TBLTBL}, benefits and avenues for this research are, figured out, pointed out and spoken out.
      
      \section{
Extreme SuperHyperDuality But As The Extensions Excerpt From Dense And Super Forms}
\begin{definition}(Different Extreme Types of Extreme SuperHyperDuality).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider an Extreme SuperHyperSet $V'=\{V_1,V_2,\ldots,V_s\}$ and $E'=\{E_1,E_2,\ldots,E_z\}.$ Then either $V'$ or $E'$ is called
\begin{itemize}
  \item[$(i)$] \textbf{Extreme e-SuperHyperDuality} if $\forall E_i\in E',~\exists E_j\in E_{ESHG:(V,E)}\setminus E'$ such that $V_a\in E_i,E_j;$
\item[$(ii)$] \textbf{Extreme re-SuperHyperDuality} if $\forall E_i\in E',~\exists E_j\in E_{ESHG:(V,E)}\setminus E'$ such that $V_a\in E_i,E_j$ and $|E_i|_{\text{NEUTROSOPIC CARDINALITY}}=|E_j|_{\text{NEUTROSOPIC CARDINALITY}};$
 \item[$(iii)$] \textbf{Extreme v-SuperHyperDuality} if $\forall V_i\in V',~\exists V_j\in V_{ESHG:(V,E)}\setminus V'$ such that $V_i,V_j\in E_a;$
\item[$(iv)$]  \textbf{Extreme rv-SuperHyperDuality} if $\forall V_i\in V',~\exists V_j\in V_{ESHG:(V,E)}\setminus V'$ such that $V_i,V_j\in E_a$ and $|V_i|_{\text{NEUTROSOPIC CARDINALITY}}=|V_j|_{\text{NEUTROSOPIC CARDINALITY}};$
\item[$(v)$] \textbf{Extreme SuperHyperDuality} if it's either of Extreme e-SuperHyperDuality, Extreme re-SuperHyperDuality, Extreme v-SuperHyperDuality, and Extreme rv-SuperHyperDuality.
\end{itemize}
\end{definition}


\begin{definition}((Extreme) SuperHyperDuality).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$ Consider an Extreme SuperHyperEdge (NSHE) $E=\{V_1,V_2,\ldots,V_s\}.$
Then $E$ is called
\begin{itemize}
 \item[$(i)$]
an \textbf{Extreme SuperHyperDuality} if it's either of Extreme e-SuperHyperDuality, Extreme re-SuperHyperDuality, Extreme v-SuperHyperDuality, and Extreme rv-SuperHyperDuality and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperEdges in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperDuality;
 \item[$(ii)$]
a \textbf{Extreme SuperHyperDuality} if it's either of Extreme e-SuperHyperDuality, Extreme re-SuperHyperDuality, Extreme v-SuperHyperDuality, and Extreme rv-SuperHyperDuality and $\mathcal{C}(NSHG)$ for a  Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality  consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperDuality;
 \item[$(iii)$]
an \textbf{Extreme SuperHyperDuality SuperHyperPolynomial} if it's either of Extreme e-SuperHyperDuality, Extreme re-SuperHyperDuality, Extreme v-SuperHyperDuality, and Extreme rv-SuperHyperDuality and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperDuality; and the Extreme power is corresponded to its Extreme coefficient;
 \item[$(iv)$]
a \textbf{Extreme SuperHyperDuality SuperHyperPolynomial} if it's either of Extreme e-SuperHyperDuality, Extreme re-SuperHyperDuality, Extreme v-SuperHyperDuality, and Extreme rv-SuperHyperDuality and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperDuality; and the Extreme power is corresponded to its Extreme coefficient;
\item[$(v)$]
an \textbf{Extreme R-SuperHyperDuality} if it's either of Extreme e-SuperHyperDuality, Extreme re-SuperHyperDuality, Extreme v-SuperHyperDuality, and Extreme rv-SuperHyperDuality and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperVertices in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperDuality;
 \item[$(vi)$]
a \textbf{Extreme R-SuperHyperDuality} if it's either of Extreme e-SuperHyperDuality, Extreme re-SuperHyperDuality, Extreme v-SuperHyperDuality, and Extreme rv-SuperHyperDuality and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperDuality;
 \item[$(vii)$]
an \textbf{Extreme R-SuperHyperDuality SuperHyperPolynomial} if it's either of Extreme e-SuperHyperDuality, Extreme re-SuperHyperDuality, Extreme v-SuperHyperDuality, and Extreme rv-SuperHyperDuality and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperDuality; and the Extreme power is corresponded to its Extreme coefficient;
 \item[$(viii)$]
a \textbf{Extreme SuperHyperDuality SuperHyperPolynomial} if it's either of Extreme e-SuperHyperDuality, Extreme re-SuperHyperDuality, Extreme v-SuperHyperDuality, and Extreme rv-SuperHyperDuality and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is  the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperDuality; and the Extreme power is corresponded to its Extreme coefficient.
\end{itemize}
\end{definition}
\begin{example}\label{136EXM1}
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E)$ in the mentioned Extreme Figures in every Extreme items.
 \begin{itemize}
 \item On the Figure \eqref{136NSHG1}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.  $E_1$ and $E_3$ are some empty Extreme  
 SuperHyperEdges but $E_2$ is a loop Extreme SuperHyperEdge and $E_4$ is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely, $E_4.$ The Extreme SuperHyperVertex, $V_3$ is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex, $V_3,$  \underline{\textbf{is}} excluded in every given Extreme SuperHyperDuality.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG2}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.  $E_1,E_2$ and $E_3$ are some empty Extreme SuperHyperEdges but $E_4$ is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely, $E_4.$ The Extreme SuperHyperVertex, $V_3$ is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex, $V_3,$  \underline{\textbf{is}} excluded in every given Extreme SuperHyperDuality.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG3}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG4}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_4,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=2z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_1,V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=15z^2.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG5}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_3\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=4z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_5\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG6}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_{{3i+1}_{i=0}^3},E_{{3i+24}_{i=0}^3}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}6z^8.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_{{3i+1}_{i=0}^7}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=6z^8.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG7},  the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_{15},E_{16},E_{17}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_3,V_{13},V_8\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=
 \\&&
4\times5\times5 z^3.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG8}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_3,V_{13},V_8\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=
 \\&&
4\times5\times5 z^3.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG9}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_{{3i+1}_{i=0}^3},E_{23}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=3z^5.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_{{3i+1}_{i=0}^3},V_{15}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=3z^5.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG10}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_3,V_{13},V_8\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=
  \\&&
4\times5\times5z^3.
\end{eqnarray*}

   \item On the Figure \eqref{136NSHG11}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_1,E_3\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_6,V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=
  \\&&
3\times3z^2.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG12}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_1\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_1,V^{i\neq 5,7,8}_{i_{i=4}^{10}}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=
5z^5.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG13}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_5,E_9\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_1,V_6\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=
 \\&&
 3\times3 z^2.
\end{eqnarray*}

   \item On the Figure \eqref{136NSHG14}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_1\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=2z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=
z.
\end{eqnarray*}

   \item On the Figure \eqref{136NSHG15}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_2,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=3z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_1,V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=
z.
\end{eqnarray*}

   \item On the Figure \eqref{136NSHG16}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_2,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=3z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_1,V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=
 \\&&
 (2\times1\times2)+(2\times4\times5)z.
\end{eqnarray*}

   \item On the Figure \eqref{136NSHG17}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_2,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=3z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_1,V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=
 \\&&
 (1\times1\times2)z.
\end{eqnarray*}

   \item On the Figure \eqref{136NSHG18}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_2,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=3z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_1,V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=
 \\&&
 (2\times2\times2)z.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG19}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_{{3i+1}_{i=0^3}}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=3z^4.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_{{2i+1}_{i=0^5}}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=
2z^6.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG20}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_6\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=10z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=z.
\end{eqnarray*}

  \item On the Figure \eqref{95NHG1}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=2z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}=10z.
\end{eqnarray*}

  \item On the Figure \eqref{95NHG2}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperDuality, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=\{E_3,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}=4z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}=\{V_3,V_6\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}
  \\&&
=10\times9+10\times6+12\times9+12\times6z^2.
\end{eqnarray*}

\end{itemize}
\end{example}
The previous Extreme approach apply on the upcoming Extreme results on Extreme SuperHyperClasses.
\begin{proposition}
Assume a connected Extreme SuperHyperPath $ESHP:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=
         \\&&=\{E_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}
 \\&&=3z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}
    \\&&=\{V^{EXTERNAL}_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}
  \\&&
=\prod |{V^{EXTERNAL}}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}
z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&{E}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}},{V^{EXTERNAL}}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \end{eqnarray*}
be a longest path taken from a connected Extreme SuperHyperPath $ESHP:(V,E).$ There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperDuality. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM18a}
In the Figure \eqref{136NSHG18a}, the connected Extreme SuperHyperPath $ESHP:(V,E),$ is highlighted and featured. The Extreme SuperHyperSet,  in the Extreme SuperHyperModel \eqref{136NSHG18a}, is the  SuperHyperDuality.

\end{example}

\begin{proposition}
Assume a connected Extreme SuperHyperCycle $ESHC:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality}}=
         \\&&=\{E_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperDuality SuperHyperPolynomial}}
 \\&&=3z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperDuality}}
    \\&&=\{V^{EXTERNAL}_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperDuality SuperHyperPolynomial}}}
  \\&&
=\prod |{V^{EXTERNAL}}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}
z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&{E}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}},{V^{EXTERNAL}}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \end{eqnarray*}
be a longest path taken from a connected Extreme SuperHyperCycle $ESHC:(V,E).$ There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperDuality. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM19a}
In the Figure \eqref{136NSHG19a}, the connected Extreme SuperHyperCycle $NSHC:(V,E),$ is highlighted and featured. The obtained Extreme SuperHyperSet, in the Extreme SuperHyperModel \eqref{136NSHG19a},
is the Extreme  SuperHyperDuality.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperStar $ESHS:(V,E).$ Then  
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperDuality}}=\{E\in E_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperDuality   SuperHyperPolynomial}}
\\&&=|i~|~E_i\in E_{ESHG:(V,E)|_{\text{Extreme Cardinality}}}|z.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperDuality}}=\{CENTER\in V_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperDuality SuperHyperPolynomial}}=z.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
  \begin{eqnarray*}
 && P:V^{EXTERNAL}_i,E_i,CENTER,V^{EXTERNAL}_j.
 \end{eqnarray*}
  be a longest path taken a connected Extreme SuperHyperStar $ESHS:(V,E).$  There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperDuality. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM20a}
In the Figure \eqref{136NSHG20a}, the connected Extreme SuperHyperStar $ESHS:(V,E),$ is highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the  Extreme SuperHyperVertices of the connected Extreme SuperHyperStar $ESHS:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG20a}, is the  Extreme SuperHyperDuality.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperBipartite $ESHB:(V,E).$ Then
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperDuality}}
\\&&=\{E_i\in E_{{P_i}^{ESHG:(V,E)}},~|{P_i}^{ESHG:(V,E)}|=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperDuality SuperHyperPolynomial}}
\\&&=(\sum_{i=|{P}^{ESHG:(V,E)}|} (\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|)\text{choose} |{P_i}^{ESHG:(V,E)}|)
\\&&
z^{\min|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|}
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperDuality}}
\\&&=\{V^{EXTERNAL}_i\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},V^{EXTERNAL}_i\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},~i\neq j\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperDuality SuperHyperPolynomial}}
\\&&=\sum_{|V^{EXTERNAL}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}=(\sum_{i=|{P}^{ESHG:(V,E)}|} (|{P_i}^{ESHG:(V,E)}|\text{choose}~2)=z^2.
\end{eqnarray*}

\end{proposition}
\begin{proof}
 Let
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperBipartite $ESHB:(V,E).$
 There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperDuality. The latter is straightforward. Then there's at least one SuperHyperDuality. Thus the notion of quasi isn't up and the SuperHyperNotions based on SuperHyperDuality could be applied. There are only two SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the representative in the
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 is a longest SuperHyperDuality taken from a connected Extreme SuperHyperBipartite $ESHB:(V,E).$ Thus only some SuperHyperVertices and only minimum-Extreme-of-SuperHyperPart SuperHyperEdges are attained in any solution
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM21a}
In the Extreme Figure \eqref{136NSHG21a}, the connected Extreme SuperHyperBipartite $ESHB:(V,E),$ is Extreme highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Extreme Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperBipartite $ESHB:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG21a}, is the Extreme  SuperHyperDuality.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperMultipartite $ESHM:(V,E).$ Then
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperDuality}}
\\&&=\{E_i\in E_{{P_i}^{ESHG:(V,E)}},~|{P_i}^{ESHG:(V,E)}|=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperDuality SuperHyperPolynomial}}
\\&&=(\sum_{i=|{P}^{ESHG:(V,E)}|} (\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|)\text{choose} |{P_i}^{ESHG:(V,E)}|)
\\&&
z^{\min|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|}
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperDuality}}
\\&&=\{V^{EXTERNAL}_i\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},V^{EXTERNAL}_i\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},~i\neq j\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperDuality SuperHyperPolynomial}}
\\&&=\sum_{|V^{EXTERNAL}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}=(\sum_{i=|{P}^{ESHG:(V,E)}|} (|{P_i}^{ESHG:(V,E)}|\text{choose}~2)=z^2.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
is a longest SuperHyperDuality taken from a connected Extreme SuperHyperMultipartite $ESHM:(V,E).$  There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperDuality. The latter is straightforward.  Then there's at least one SuperHyperDuality. Thus the notion of quasi isn't up and the SuperHyperNotions based on SuperHyperDuality could be applied. There are only $z'$ SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the representative in the  
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperMultipartite $ESHM:(V,E).$ Thus only some SuperHyperVertices and only minimum-Extreme-of-SuperHyperPart SuperHyperEdges are attained in any solution
    \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperMultipartite $ESHM:(V,E).$ The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM22a}
In the Figure \eqref{136NSHG22a}, the connected Extreme SuperHyperMultipartite $ESHM:(V,E),$ is highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperMultipartite $ESHM:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG22a}, is the  Extreme SuperHyperDuality.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperWheel $ESHW:(V,E).$ Then,
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperDuality}}=\{E^{*}\in E^{*}_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperDuality   SuperHyperPolynomial}}
\\&&=|i~|~E^{*}_i\in E^{*}_{ESHG:(V,E)|_{\text{Extreme Cardinality}}}|z.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperDuality}}=\{CENTER\in V_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperDuality SuperHyperPolynomial}}=z.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E^{*}_1,
 \\&&V^{EXTERNAL}_2,E^{*}_2,
 \\&&\ldots,
 \\&&E^{*}_{|E^{*}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}},V^{EXTERNAL}_{|E^{*}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}+1}
 \end{eqnarray*}
 is a longest SuperHyperDuality taken from a connected Extreme SuperHyperWheel $ESHW:(V,E).$
 There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E^{*}_z\in E^{*}_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E^{*}_z
\equiv
\\&& \exists! E^{*}_z\in E^{*}_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E^{*}_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperDuality. The latter is straightforward. Then there's at least one SuperHyperDuality. Thus the notion of quasi isn't up and the SuperHyperNotions based on SuperHyperDuality could be applied. The unique embedded SuperHyperDuality proposes some longest SuperHyperDuality excerpt from some representatives. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM23a}
In the Extreme Figure \eqref{136NSHG23a}, the connected Extreme SuperHyperWheel $NSHW:(V,E),$ is Extreme highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperWheel $ESHW:(V,E),$
in the Extreme SuperHyperModel \eqref{136NSHG23a}, is the  Extreme SuperHyperDuality.
            \end{example}
            \section{
Extreme SuperHyperJoin But As The Extensions Excerpt From Dense And Super Forms}
\begin{definition}(Different Extreme Types of Extreme SuperHyperJoin).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider an Extreme SuperHyperSet $V'=\{V_1,V_2,\ldots,V_s\}$ and $E'=\{E_1,E_2,\ldots,E_z\}.$ Then either $V'$ or $E'$ is called
\begin{itemize}
  \item[$(i)$] \textbf{Extreme e-SuperHyperJoin} if $\forall E_i\in E_{ESHG:(V,E)}\setminus E',~\exists E_j\in E',$ such that $V_a\in E_i,E_j;$ and $\forall E_i,E_j\in E',$ such that $V_a\not\in E_i,E_j;$
\item[$(ii)$] \textbf{Extreme re-SuperHyperJoin} if $\forall E_i\in E_{ESHG:(V,E)}\setminus E',~\exists E_j\in E',$ such that $V_a\in E_i,E_j;$ $\forall E_i,E_j\in E',$ such that $V_a\not\in E_i,E_j;$ and $|E_i|_{\text{NEUTROSOPIC CARDINALITY}}=|E_j|_{\text{NEUTROSOPIC CARDINALITY}};$
 \item[$(iii)$] \textbf{Extreme v-SuperHyperJoin} if $\forall V_i\in E_{ESHG:(V,E)}\setminus V',~\exists V_j\in V',$ such that $V_i,V_j\not\in E_a;$ and $\forall V_i,V_j\in V',$ such that $ V_i,V_j\not\in E_a;$
\item[$(iv)$]  \textbf{Extreme rv-SuperHyperJoin} if $\forall V_i\in E_{ESHG:(V,E)}\setminus V',~\exists V_j\in V',$ such that $V_i,V_j\in E_a;$ $\forall V_i,V_j\in V',$ such that $ V_i,V_j\not\in E_a;$ and $|V_i|_{\text{NEUTROSOPIC CARDINALITY}}=|V_j|_{\text{NEUTROSOPIC CARDINALITY}};$
\item[$(v)$] \textbf{Extreme SuperHyperJoin} if it's either of Extreme e-SuperHyperJoin, Extreme re-SuperHyperJoin, Extreme v-SuperHyperJoin, and Extreme rv-SuperHyperJoin.
\end{itemize}
\end{definition}


\begin{definition}((Extreme) SuperHyperJoin).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$ Consider an Extreme SuperHyperEdge (NSHE) $E=\{V_1,V_2,\ldots,V_s\}.$
Then $E$ is called
\begin{itemize}
 \item[$(i)$]
an \textbf{Extreme SuperHyperJoin} if it's either of Extreme e-SuperHyperJoin, Extreme re-SuperHyperJoin, Extreme v-SuperHyperJoin, and Extreme rv-SuperHyperJoin and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperEdges in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperJoin;
 \item[$(ii)$]
a \textbf{Extreme SuperHyperJoin} if it's either of Extreme e-SuperHyperJoin, Extreme re-SuperHyperJoin, Extreme v-SuperHyperJoin, and Extreme rv-SuperHyperJoin and $\mathcal{C}(NSHG)$ for a  Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality  consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperJoin;
 \item[$(iii)$]
an \textbf{Extreme SuperHyperJoin SuperHyperPolynomial} if it's either of Extreme e-SuperHyperJoin, Extreme re-SuperHyperJoin, Extreme v-SuperHyperJoin, and Extreme rv-SuperHyperJoin and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperJoin; and the Extreme power is corresponded to its Extreme coefficient;
 \item[$(iv)$]
a \textbf{Extreme SuperHyperJoin SuperHyperPolynomial} if it's either of Extreme e-SuperHyperJoin, Extreme re-SuperHyperJoin, Extreme v-SuperHyperJoin, and Extreme rv-SuperHyperJoin and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperJoin; and the Extreme power is corresponded to its Extreme coefficient;
\item[$(v)$]
an \textbf{Extreme R-SuperHyperJoin} if it's either of Extreme e-SuperHyperJoin, Extreme re-SuperHyperJoin, Extreme v-SuperHyperJoin, and Extreme rv-SuperHyperJoin and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperVertices in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperJoin;
 \item[$(vi)$]
a \textbf{Extreme R-SuperHyperJoin} if it's either of Extreme e-SuperHyperJoin, Extreme re-SuperHyperJoin, Extreme v-SuperHyperJoin, and Extreme rv-SuperHyperJoin and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperJoin;
 \item[$(vii)$]
an \textbf{Extreme R-SuperHyperJoin SuperHyperPolynomial} if it's either of Extreme e-SuperHyperJoin, Extreme re-SuperHyperJoin, Extreme v-SuperHyperJoin, and Extreme rv-SuperHyperJoin and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperJoin; and the Extreme power is corresponded to its Extreme coefficient;
 \item[$(viii)$]
a \textbf{Extreme SuperHyperJoin SuperHyperPolynomial} if it's either of Extreme e-SuperHyperJoin, Extreme re-SuperHyperJoin, Extreme v-SuperHyperJoin, and Extreme rv-SuperHyperJoin and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is  the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperJoin; and the Extreme power is corresponded to its Extreme coefficient.
\end{itemize}
\end{definition}

\begin{example}\label{136EXM1}
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E)$ in the mentioned Extreme Figures in every Extreme items.
 \begin{itemize}
 \item On the Figure \eqref{136NSHG1}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.  $E_1$ and $E_3$ are some empty Extreme  
 SuperHyperEdges but $E_2$ is a loop Extreme SuperHyperEdge and $E_4$ is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely, $E_4.$ The Extreme SuperHyperVertex, $V_3$ is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex, $V_3,$  \underline{\textbf{is}} excluded in every given Extreme SuperHyperJoin.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG2}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.  $E_1,E_2$ and $E_3$ are some empty Extreme SuperHyperEdges but $E_4$ is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely, $E_4.$ The Extreme SuperHyperVertex, $V_3$ is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex, $V_3,$  \underline{\textbf{is}} excluded in every given Extreme SuperHyperJoin.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG3}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG4}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_4,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=2z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_1,V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=15z^2.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG5}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_3\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=4z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_5\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG6}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_{{3i+1}_{i=0}^3},E_{{3i+24}_{i=0}^3}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}6z^8.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_{{3i+1}_{i=0}^7}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=6z^8.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG7},  the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_{15},E_{16},E_{17}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_3,V_{13},V_8\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=
 \\&&
4\times5\times5 z^3.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG8}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_3,V_{13},V_8\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=
 \\&&
4\times5\times5 z^3.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG9}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_{{3i+1}_{i=0}^3},E_{23}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=3z^5.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_{{3i+1}_{i=0}^3},V_{15}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=3z^5.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG10}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_3,V_{13},V_8\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=
  \\&&
4\times5\times5z^3.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG11}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_1,E_3\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_6,V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=
  \\&&
3\times3z^2.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG12}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_1\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_1,V^{i\neq 5,7,8}_{i_{i=4}^{10}}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=
5z^5.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG13}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_3,E_9\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_1,V_6\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=
 \\&&
 3\times3 z^2.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG14}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_1\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=2z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=
z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG15}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_2,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=3z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_1,V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=
z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG16}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_2,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=3z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_2,V_7,V_{17}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=
 \\&&
 (1\times5\times5)+(1\times2+1)z^3.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG17}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_2,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=3z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_{27},V_2,V_7,V_{17}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=
 \\&&
 (1\times1\times2+1)z^4.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG18}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_2,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=3z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_{27},V_2,V_7,V_{17}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=
 \\&&
 (1\times1\times2+1)z^4.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG19}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_{{3i+1}_{i=0^3}}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=3z^4.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_{{2i+1}_{i=0^5}}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=
2z^6.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG20}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_6\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=10z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=z.
\end{eqnarray*}

 \item On the Figure \eqref{95NHG1}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=2z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}=10z.
\end{eqnarray*}
 \item On the Figure \eqref{95NHG2}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperJoin, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=\{E_2,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}=3z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}=\{V_3,V_6\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}
  \\&&
=10\times6+10\times6+12\times6+12\times6z^2.
\end{eqnarray*}
\end{itemize}
\end{example}
The previous Extreme approach apply on the upcoming Extreme results on Extreme SuperHyperClasses.
\begin{proposition}
Assume a connected Extreme SuperHyperPath $ESHP:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=
         \\&&=\{E_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}
 \\&&=3z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}
    \\&&=\{V^{EXTERNAL}_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}
  \\&&
=\prod |{V^{EXTERNAL}}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}
z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&{E}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}},{V^{EXTERNAL}}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \end{eqnarray*}
be a longest path taken from a connected Extreme SuperHyperPath $ESHP:(V,E).$ There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperJoin. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM18a}
In the Figure \eqref{136NSHG18a}, the connected Extreme SuperHyperPath $ESHP:(V,E),$ is highlighted and featured. The Extreme SuperHyperSet,  in the Extreme SuperHyperModel \eqref{136NSHG18a}, is the  SuperHyperJoin.
\end{example}

\begin{proposition}
Assume a connected Extreme SuperHyperCycle $ESHC:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=
         \\&&=\{E_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}
 \\&&=3z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}
    \\&&=\{V^{EXTERNAL}_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}
  \\&&
=\prod |{V^{EXTERNAL}}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}
z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&{E}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}},{V^{EXTERNAL}}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \end{eqnarray*}
be a longest path taken from a connected Extreme SuperHyperCycle $ESHC:(V,E).$ There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperJoin. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM19a}
In the Figure \eqref{136NSHG19a}, the connected Extreme SuperHyperCycle $NSHC:(V,E),$ is highlighted and featured. The obtained Extreme SuperHyperSet, in the Extreme SuperHyperModel \eqref{136NSHG19a},
is the Extreme  SuperHyperJoin.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperStar $ESHS:(V,E).$ Then  
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperJoin}}=\{E\in E_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperJoin   SuperHyperPolynomial}}
\\&&=|i~|~E_i\in E_{ESHG:(V,E)|_{\text{Extreme Cardinality}}}|z.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperJoin}}=\{CENTER\in V_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperJoin SuperHyperPolynomial}}=z.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
  \begin{eqnarray*}
 && P:V^{EXTERNAL}_i,E_i,CENTER,V^{EXTERNAL}_j.
 \end{eqnarray*}
  be a longest path taken a connected Extreme SuperHyperStar $ESHS:(V,E).$  There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperJoin. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM20a}
In the Figure \eqref{136NSHG20a}, the connected Extreme SuperHyperStar $ESHS:(V,E),$ is highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the  Extreme SuperHyperVertices of the connected Extreme SuperHyperStar $ESHS:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG20a}, is the  Extreme SuperHyperJoin.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperBipartite $ESHB:(V,E).$ Then
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperJoin}}
\\&&=
\text{(PERFECT MATCHING)}.
\\&&
\{E_i\in E_{{P_i}^{ESHG:(V,E)}},
\\&&
~\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperJoin}}
\\&&
=\text{(OTHERWISE)}.
\\&&
\{\},
\\&& \text{If}
~\exists {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|\neq\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}
\\&&=
\text{(PERFECT MATCHING)}.
\\&&=(\sum_{i=|{P}^{ESHG:(V,E)}|} (\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|)\text{choose} |{P_i}^{ESHG:(V,E)}|)
\\&&
z^{\min|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|}
\\&&
\text{where}~
\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|
\\&&
=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}
\\&&
=\text{(OTHERWISE)}0.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperJoin}}
\\&&=\{V^{EXTERNAL}_i\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},V^{EXTERNAL}_i\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},~i\neq j\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperJoin SuperHyperPolynomial}}
\\&&=\sum_{|V^{EXTERNAL}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}=(\sum_{i=|{P}^{ESHG:(V,E)}|} (|{P_i}^{ESHG:(V,E)}|\text{choose}~2)=z^2.
\end{eqnarray*}

\end{proposition}
\begin{proof}
 Let
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperBipartite $ESHB:(V,E).$
 There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperJoin. The latter is straightforward. Then there's no at least one SuperHyperJoin. Thus the notion of quasi may be up but the SuperHyperNotions based on SuperHyperJoin could be applied. There are only two SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the representative in the
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 is a longest SuperHyperJoin taken from a connected Extreme SuperHyperBipartite $ESHB:(V,E).$ Thus only some SuperHyperVertices and only minimum-Extreme-of-SuperHyperPart SuperHyperEdges are attained in any solution
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM21a}
In the Extreme Figure \eqref{136NSHG21a}, the connected Extreme SuperHyperBipartite $ESHB:(V,E),$ is Extreme highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Extreme Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperBipartite $ESHB:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG21a}, is the Extreme  SuperHyperJoin.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperMultipartite $ESHM:(V,E).$ Then
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperJoin}}
\\&&=
\text{(PERFECT MATCHING)}.
\\&&
\{E_i\in E_{{P_i}^{ESHG:(V,E)}},
\\&&
~\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperJoin}}
\\&&
=\text{(OTHERWISE)}.
\\&&
\{\},
\\&& \text{If}
~\exists {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|\neq\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}
\\&&=
\text{(PERFECT MATCHING)}.
\\&&=(\sum_{i=|{P}^{ESHG:(V,E)}|} (\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|)\text{choose} |{P_i}^{ESHG:(V,E)}|)
\\&&
z^{\min|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|}
\\&&
\text{where}~
\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|
\\&&
=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}
\\&&
=\text{(OTHERWISE)}0.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperJoin}}
\\&&=\{V^{EXTERNAL}_i\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},V^{EXTERNAL}_i\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},~i\neq j\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperJoin SuperHyperPolynomial}}
\\&&=\sum_{|V^{EXTERNAL}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}=(\sum_{i=|{P}^{ESHG:(V,E)}|} (|{P_i}^{ESHG:(V,E)}|\text{choose}~2)=z^2.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
is a longest SuperHyperJoin taken from a connected Extreme SuperHyperMultipartite $ESHM:(V,E).$  There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperJoin. The latter is straightforward.  Then there's no at least one SuperHyperJoin. Thus the notion of quasi may be up but the SuperHyperNotions based on SuperHyperJoin could be applied. There are only $z'$ SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the representative in the  
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperMultipartite $ESHM:(V,E).$ Thus only some SuperHyperVertices and only minimum-Extreme-of-SuperHyperPart SuperHyperEdges are attained in any solution
    \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperMultipartite $ESHM:(V,E).$ The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM22a}
In the Figure \eqref{136NSHG22a}, the connected Extreme SuperHyperMultipartite $ESHM:(V,E),$ is highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperMultipartite $ESHM:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG22a}, is the  Extreme SuperHyperJoin.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperWheel $ESHW:(V,E).$ Then,
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin}}=
         \\&&=\{E_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperJoin SuperHyperPolynomial}}
 \\&&=3z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperJoin}}
    \\&&=\{V^{EXTERNAL}_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperJoin SuperHyperPolynomial}}}
  \\&&
=\prod |{V^{EXTERNAL}}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}
z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&{E}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}},{V^{EXTERNAL}}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \end{eqnarray*}
  is a longest SuperHyperJoin taken from a connected Extreme SuperHyperWheel $ESHW:(V,E).$
 There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperJoin. The latter is straightforward. Then there's at least one SuperHyperJoin. Thus the notion of quasi isn't up and the SuperHyperNotions based on SuperHyperJoin could be applied. The unique embedded SuperHyperJoin proposes some longest SuperHyperJoin excerpt from some representatives. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM23a}
In the Extreme Figure \eqref{136NSHG23a}, the connected Extreme SuperHyperWheel $NSHW:(V,E),$ is Extreme highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperWheel $ESHW:(V,E),$
in the Extreme SuperHyperModel \eqref{136NSHG23a}, is the  Extreme SuperHyperJoin.

            \end{example}
           \section{
Extreme SuperHyperPerfect But As The Extensions Excerpt From Dense And Super Forms}
\begin{definition}(Different Extreme Types of Extreme SuperHyperPerfect).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider an Extreme SuperHyperSet $V'=\{V_1,V_2,\ldots,V_s\}$ and $E'=\{E_1,E_2,\ldots,E_z\}.$ Then either $V'$ or $E'$ is called
\begin{itemize}
  \item[$(i)$] \textbf{Extreme e-SuperHyperPerfect} if $\forall E_i\in E_{ESHG:(V,E)}\setminus E',~\exists! E_j\in E',$ such that $V_a\in E_i,E_j;$
\item[$(ii)$] \textbf{Extreme re-SuperHyperPerfect} if $\forall E_i\in E_{ESHG:(V,E)}\setminus E',~\exists! E_j\in E',$ such that $V_a\in E_i,E_j;$  and $|E_i|_{\text{NEUTROSOPIC CARDINALITY}}=|E_j|_{\text{NEUTROSOPIC CARDINALITY}};$
 \item[$(iii)$] \textbf{Extreme v-SuperHyperPerfect} if $\forall V_i\in V_{ESHG:(V,E)}\setminus V',~\exists! V_j\in V',$ such that $V_i,V_j\in E_a;$
\item[$(iv)$]  \textbf{Extreme rv-SuperHyperPerfect} if $\forall V_i\in V_{ESHG:(V,E)}\setminus V',~\exists! V_j\in V',$ such that $V_i,V_j\in E_a;$ and $|V_i|_{\text{NEUTROSOPIC CARDINALITY}}=|V_j|_{\text{NEUTROSOPIC CARDINALITY}};$
\item[$(v)$] \textbf{Extreme SuperHyperPerfect} if it's either of Extreme e-SuperHyperPerfect, Extreme re-SuperHyperPerfect, Extreme v-SuperHyperPerfect, and Extreme rv-SuperHyperPerfect.
\end{itemize}
\end{definition}


\begin{definition}((Extreme) SuperHyperPerfect).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$ Consider an Extreme SuperHyperEdge (NSHE) $E=\{V_1,V_2,\ldots,V_s\}.$
Then $E$ is called
\begin{itemize}
 \item[$(i)$]
an \textbf{Extreme SuperHyperPerfect} if it's either of Extreme e-SuperHyperPerfect, Extreme re-SuperHyperPerfect, Extreme v-SuperHyperPerfect, and Extreme rv-SuperHyperPerfect and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperEdges in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperPerfect;
 \item[$(ii)$]
a \textbf{Extreme SuperHyperPerfect} if it's either of Extreme e-SuperHyperPerfect, Extreme re-SuperHyperPerfect, Extreme v-SuperHyperPerfect, and Extreme rv-SuperHyperPerfect and $\mathcal{C}(NSHG)$ for a  Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality  consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperPerfect;
 \item[$(iii)$]
an \textbf{Extreme SuperHyperPerfect SuperHyperPolynomial} if it's either of Extreme e-SuperHyperPerfect, Extreme re-SuperHyperPerfect, Extreme v-SuperHyperPerfect, and Extreme rv-SuperHyperPerfect and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperPerfect; and the Extreme power is corresponded to its Extreme coefficient;
 \item[$(iv)$]
a \textbf{Extreme SuperHyperPerfect SuperHyperPolynomial} if it's either of Extreme e-SuperHyperPerfect, Extreme re-SuperHyperPerfect, Extreme v-SuperHyperPerfect, and Extreme rv-SuperHyperPerfect and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperPerfect; and the Extreme power is corresponded to its Extreme coefficient;
\item[$(v)$]
an \textbf{Extreme R-SuperHyperPerfect} if it's either of Extreme e-SuperHyperPerfect, Extreme re-SuperHyperPerfect, Extreme v-SuperHyperPerfect, and Extreme rv-SuperHyperPerfect and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperVertices in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperPerfect;
 \item[$(vi)$]
a \textbf{Extreme R-SuperHyperPerfect} if it's either of Extreme e-SuperHyperPerfect, Extreme re-SuperHyperPerfect, Extreme v-SuperHyperPerfect, and Extreme rv-SuperHyperPerfect and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperPerfect;
 \item[$(vii)$]
an \textbf{Extreme R-SuperHyperPerfect SuperHyperPolynomial} if it's either of Extreme e-SuperHyperPerfect, Extreme re-SuperHyperPerfect, Extreme v-SuperHyperPerfect, and Extreme rv-SuperHyperPerfect and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperPerfect; and the Extreme power is corresponded to its Extreme coefficient;
 \item[$(viii)$]
a \textbf{Extreme SuperHyperPerfect SuperHyperPolynomial} if it's either of Extreme e-SuperHyperPerfect, Extreme re-SuperHyperPerfect, Extreme v-SuperHyperPerfect, and Extreme rv-SuperHyperPerfect and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is  the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperPerfect; and the Extreme power is corresponded to its Extreme coefficient.
\end{itemize}
\end{definition}

\begin{example}\label{136EXM1}
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E)$ in the mentioned Extreme Figures in every Extreme items.
 \begin{itemize}
 \item On the Figure \eqref{136NSHG1}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.  $E_1$ and $E_3$ are some empty Extreme  
 SuperHyperEdges but $E_2$ is a loop Extreme SuperHyperEdge and $E_4$ is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely, $E_4.$ The Extreme SuperHyperVertex, $V_3$ is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex, $V_3,$  \underline{\textbf{is}} excluded in every given Extreme SuperHyperPerfect.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG2}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.  $E_1,E_2$ and $E_3$ are some empty Extreme SuperHyperEdges but $E_4$ is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely, $E_4.$ The Extreme SuperHyperVertex, $V_3$ is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex, $V_3,$  \underline{\textbf{is}} excluded in every given Extreme SuperHyperPerfect.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG3}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=3z.
\end{eqnarray*}
 \item On the Figure \eqref{136NSHG4}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_4,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=2z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_1,V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=15z^2.
\end{eqnarray*}
  \item On the Figure \eqref{136NSHG5}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_3\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=4z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_5\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG6}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_{{3i+1}_{i=0}^3},E_{{3i+24}_{i=0}^3}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}6z^8.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_{{3i+1}_{i=0}^7}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=6z^8.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG7},  the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_{15},E_{16},E_{17}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_3,V_6,V_8\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=
 \\&&
3\times4\times4 z^3.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG8}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_3,V_6,V_8\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=
 \\&&
3\times4\times4 z^3.
\end{eqnarray*}
 \item On the Figure \eqref{136NSHG9}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperPerfect}}=\{E_{{3i+1}_{i=0}^3},E_{23}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperPerfect SuperHyperPolynomial}}=3z^5.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperPerfect}}=\{V_{{3i+1}_{i=0}^3},V_{15}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperPerfect SuperHyperPolynomial}}}=3z^5.
\end{eqnarray*}
 \item On the Figure \eqref{136NSHG10}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_3,V_6,V_8\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=
  \\&&
3\times4\times4z^3.
\end{eqnarray*}
  \item On the Figure \eqref{136NSHG11}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_1,E_3\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_6,V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=
  \\&&
3\times2z^2.
\end{eqnarray*}
 \item On the Figure \eqref{136NSHG12}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_1\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_1,V^{i\neq 5,7,8}_{i_{i=4}^{10}}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=
5z^5.
\end{eqnarray*}
  \item On the Figure \eqref{136NSHG13}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_3,E_9\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_1,V_6\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=
 \\&&
 3\times3 z^2.
\end{eqnarray*}
  \item On the Figure \eqref{136NSHG14}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_1\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=2z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=
z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG15}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_2,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=3z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_1,V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=
z.
\end{eqnarray*}
  \item On the Figure \eqref{136NSHG16}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_2,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=3z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperPerfect}}=\{V_2,V_7,V_{17}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperPerfect SuperHyperPolynomial}}}=
 \\&&
 (1\times5\times5)+(1\times2+1)z^3.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG17}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_2,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=3z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperPerfect}}=\{V_{27},V_2,V_7,V_{17}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperPerfect SuperHyperPolynomial}}}=
 \\&&
 (1\times1\times2+1)z^4.
\end{eqnarray*}
  \item On the Figure \eqref{136NSHG18}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_2,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=3z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperPerfect}}=\{V_{27},V_2,V_7,V_{17}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperPerfect SuperHyperPolynomial}}}=
 \\&&
 (1\times1\times2+1)z^4.
\end{eqnarray*}
  \item On the Figure \eqref{136NSHG19}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_{{3i+1}_{i=0^3}}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=3z^4.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperPerfect}}=\{V_{{2i+1}_{i=0^5}}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperPerfect SuperHyperPolynomial}}}=
2z^6.
\end{eqnarray*}
  \item On the Figure \eqref{136NSHG20}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_6\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=10z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=z.
\end{eqnarray*}
 \item On the Figure \eqref{95NHG1}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=2z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}=10z.
\end{eqnarray*}
 \item On the Figure \eqref{95NHG2}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperPerfect, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E_2,E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}=z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperPerfect}}=\{V_3,V_6\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperPerfect SuperHyperPolynomial}}}
  \\&&
=10\times6+10\times6+12\times6+12\times6z^2.
\end{eqnarray*}
\end{itemize}
\end{example}
The previous Extreme approach apply on the upcoming Extreme results on Extreme SuperHyperClasses.
\begin{proposition}
Assume a connected Extreme SuperHyperPath $ESHP:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=
         \\&&=\{E_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}
 \\&&=3z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}
    \\&&=\{V^{EXTERNAL}_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}
  \\&&
=\prod |{V^{EXTERNAL}}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}
z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&{E}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}},{V^{EXTERNAL}}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \end{eqnarray*}
be a longest path taken from a connected Extreme SuperHyperPath $ESHP:(V,E).$ There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperPerfect. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM18a}
In the Figure \eqref{136NSHG18a}, the connected Extreme SuperHyperPath $ESHP:(V,E),$ is highlighted and featured. The Extreme SuperHyperSet,  in the Extreme SuperHyperModel \eqref{136NSHG18a}, is the  SuperHyperPerfect.
\end{example}

\begin{proposition}
Assume a connected Extreme SuperHyperCycle $ESHC:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=
         \\&&=\{E_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}
 \\&&=3z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}
    \\&&=\{V^{EXTERNAL}_i\}_{i=1}^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}}
  \\&&
=\prod |{V^{EXTERNAL}}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}
z^{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&{E}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}},{V^{EXTERNAL}}_{\frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}{3}}.
 \end{eqnarray*}
be a longest path taken from a connected Extreme SuperHyperCycle $ESHC:(V,E).$ There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperPerfect. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM19a}
In the Figure \eqref{136NSHG19a}, the connected Extreme SuperHyperCycle $NSHC:(V,E),$ is highlighted and featured. The obtained Extreme SuperHyperSet, in the Extreme SuperHyperModel \eqref{136NSHG19a},
is the Extreme  SuperHyperPerfect.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperStar $ESHS:(V,E).$ Then  
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E\in E_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect   SuperHyperPolynomial}}
\\&&=|i~|~E_i\in E_{ESHG:(V,E)|_{\text{Extreme Cardinality}}}|z.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{CENTER\in V_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}=z.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
  \begin{eqnarray*}
 && P:V^{EXTERNAL}_i,E_i,CENTER,V^{EXTERNAL}_j.
 \end{eqnarray*}
  be a longest path taken a connected Extreme SuperHyperStar $ESHS:(V,E).$  There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperPerfect. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM20a}
In the Figure \eqref{136NSHG20a}, the connected Extreme SuperHyperStar $ESHS:(V,E),$ is highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the  Extreme SuperHyperVertices of the connected Extreme SuperHyperStar $ESHS:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG20a}, is the  Extreme SuperHyperPerfect.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperBipartite $ESHB:(V,E).$ Then
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperPerfect}}
\\&&=
\text{(PERFECT MATCHING)}.
\\&&
\{E_i\in E_{{P_i}^{ESHG:(V,E)}},
\\&&
~\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperPerfect}}
\\&&
=\text{(OTHERWISE)}.
\\&&
\{\},
\\&& \text{If}
~\exists {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|\neq\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}
\\&&=
\text{(PERFECT MATCHING)}.
\\&&=(\sum_{i=|{P}^{ESHG:(V,E)}|} (\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|)\text{choose} |{P_i}^{ESHG:(V,E)}|)
\\&&
z^{\min|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|}
\\&&
\text{where}~
\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|
\\&&
=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}
\\&&
=\text{(OTHERWISE)}0.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperPerfect}}
\\&&=\{V^{EXTERNAL}_i\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},V^{EXTERNAL}_i\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},~i\neq j\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperPerfect SuperHyperPolynomial}}
\\&&=\sum_{|V^{EXTERNAL}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}=(\sum_{i=|{P}^{ESHG:(V,E)}|} (|{P_i}^{ESHG:(V,E)}|\text{choose}~2)=z^2.
\end{eqnarray*}

\end{proposition}
\begin{proof}
 Let
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperBipartite $ESHB:(V,E).$
 There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperPerfect. The latter is straightforward. Then there's no at least one SuperHyperPerfect. Thus the notion of quasi may be up but the SuperHyperNotions based on SuperHyperPerfect could be applied. There are only two SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the representative in the
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 is a longest SuperHyperPerfect taken from a connected Extreme SuperHyperBipartite $ESHB:(V,E).$ Thus only some SuperHyperVertices and only minimum-Extreme-of-SuperHyperPart SuperHyperEdges are attained in any solution
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM21a}
In the Extreme Figure \eqref{136NSHG21a}, the connected Extreme SuperHyperBipartite $ESHB:(V,E),$ is Extreme highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Extreme Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperBipartite $ESHB:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG21a}, is the Extreme  SuperHyperPerfect.

\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperMultipartite $ESHM:(V,E).$ Then
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperPerfect}}
\\&&=
\text{(PERFECT MATCHING)}.
\\&&
\{E_i\in E_{{P_i}^{ESHG:(V,E)}},
\\&&
~\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperPerfect}}
\\&&
=\text{(OTHERWISE)}.
\\&&
\{\},
\\&& \text{If}
~\exists {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|\neq\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}
\\&&=
\text{(PERFECT MATCHING)}.
\\&&=(\sum_{i=|{P}^{ESHG:(V,E)}|} (\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|)\text{choose} |{P_i}^{ESHG:(V,E)}|)
\\&&
z^{\min|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|}
\\&&
\text{where}~
\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|
\\&&
=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect SuperHyperPolynomial}}
\\&&
=\text{(OTHERWISE)}0.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperPerfect}}
\\&&=\{V^{EXTERNAL}_i\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},V^{EXTERNAL}_i\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},~i\neq j\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperPerfect SuperHyperPolynomial}}
\\&&=\sum_{|V^{EXTERNAL}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}=(\sum_{i=|{P}^{ESHG:(V,E)}|} (|{P_i}^{ESHG:(V,E)}|\text{choose}~2)=z^2.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
is a longest SuperHyperPerfect taken from a connected Extreme SuperHyperMultipartite $ESHM:(V,E).$  There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperPerfect. The latter is straightforward.  Then there's no at least one SuperHyperPerfect. Thus the notion of quasi may be up but the SuperHyperNotions based on SuperHyperPerfect could be applied. There are only $z'$ SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the representative in the  
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperMultipartite $ESHM:(V,E).$ Thus only some SuperHyperVertices and only minimum-Extreme-of-SuperHyperPart SuperHyperEdges are attained in any solution
    \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2,
 \\&&\ldots,
 \\&&E_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|},V^{EXTERNAL}_{\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|+1}
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperMultipartite $ESHM:(V,E).$ The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM22a}
In the Figure \eqref{136NSHG22a}, the connected Extreme SuperHyperMultipartite $ESHM:(V,E),$ is highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperMultipartite $ESHM:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG22a}, is the  Extreme SuperHyperPerfect.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperWheel $ESHW:(V,E).$ Then,
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect}}=\{E\in E_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperPerfect   SuperHyperPolynomial}}
\\&&=|i~|~E_i\in E_{ESHG:(V,E)|_{\text{Extreme Cardinality}}}|z.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect}}=\{CENTER\in V_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperPerfect SuperHyperPolynomial}}=z.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
  \begin{eqnarray*}
 && P:V^{EXTERNAL}_i,E_i,CENTER,V^{EXTERNAL}_j.
 \end{eqnarray*}
  is a longest SuperHyperPerfect taken from a connected Extreme SuperHyperWheel $ESHW:(V,E).$
 There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperPerfect. The latter is straightforward. Then there's at least one SuperHyperPerfect. Thus the notion of quasi isn't up and the SuperHyperNotions based on SuperHyperPerfect could be applied. The unique embedded SuperHyperPerfect proposes some longest SuperHyperPerfect excerpt from some representatives. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM23a}
In the Extreme Figure \eqref{136NSHG23a}, the connected Extreme SuperHyperWheel $NSHW:(V,E),$ is Extreme highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperWheel $ESHW:(V,E),$
in the Extreme SuperHyperModel \eqref{136NSHG23a}, is the  Extreme SuperHyperPerfect.
            \end{example}

\section{
Extreme SuperHyperTotal But As The Extensions Excerpt From Dense And Super Forms}
\begin{definition}(Different Extreme Types of Extreme SuperHyperTotal).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider an Extreme SuperHyperSet $V'=\{V_1,V_2,\ldots,V_s\}$ and $E'=\{E_1,E_2,\ldots,E_z\}.$ Then either $V'$ or $E'$ is called
\begin{itemize}
  \item[$(i)$] \textbf{Extreme e-SuperHyperTotal} if $\forall E_i\in E_{ESHG:(V,E)},~\exists! E_j\in E',$ such that $V_a\in E_i,E_j;$
\item[$(ii)$] \textbf{Extreme re-SuperHyperTotal} if $\forall E_i\in E_{ESHG:(V,E)},~\exists! E_j\in E',$ such that $V_a\in E_i,E_j;$  and $|E_i|_{\text{NEUTROSOPIC CARDINALITY}}=|E_j|_{\text{NEUTROSOPIC CARDINALITY}};$
 \item[$(iii)$] \textbf{Extreme v-SuperHyperTotal} if $\forall V_i\in V_{ESHG:(V,E)},~\exists! V_j\in V',$ such that $V_i,V_j\in E_a;$
\item[$(iv)$]  \textbf{Extreme rv-SuperHyperTotal} if $\forall V_i\in V_{ESHG:(V,E)},~\exists! V_j\in V',$ such that $V_i,V_j\in E_a;$ and $|V_i|_{\text{NEUTROSOPIC CARDINALITY}}=|V_j|_{\text{NEUTROSOPIC CARDINALITY}};$
\item[$(v)$] \textbf{Extreme SuperHyperTotal} if it's either of Extreme e-SuperHyperTotal, Extreme re-SuperHyperTotal, Extreme v-SuperHyperTotal, and Extreme rv-SuperHyperTotal.
\end{itemize}
\end{definition}


\begin{definition}((Extreme) SuperHyperTotal).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$ Consider an Extreme SuperHyperEdge (NSHE) $E=\{V_1,V_2,\ldots,V_s\}.$
Then $E$ is called
\begin{itemize}
 \item[$(i)$]
an \textbf{Extreme SuperHyperTotal} if it's either of Extreme e-SuperHyperTotal, Extreme re-SuperHyperTotal, Extreme v-SuperHyperTotal, and Extreme rv-SuperHyperTotal and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperEdges in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperTotal;
 \item[$(ii)$]
a \textbf{Extreme SuperHyperTotal} if it's either of Extreme e-SuperHyperTotal, Extreme re-SuperHyperTotal, Extreme v-SuperHyperTotal, and Extreme rv-SuperHyperTotal and $\mathcal{C}(NSHG)$ for a  Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality  consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperTotal;
 \item[$(iii)$]
an \textbf{Extreme SuperHyperTotal SuperHyperPolynomial} if it's either of Extreme e-SuperHyperTotal, Extreme re-SuperHyperTotal, Extreme v-SuperHyperTotal, and Extreme rv-SuperHyperTotal and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperTotal; and the Extreme power is corresponded to its Extreme coefficient;
 \item[$(iv)$]
a \textbf{Extreme SuperHyperTotal SuperHyperPolynomial} if it's either of Extreme e-SuperHyperTotal, Extreme re-SuperHyperTotal, Extreme v-SuperHyperTotal, and Extreme rv-SuperHyperTotal and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperTotal; and the Extreme power is corresponded to its Extreme coefficient;
\item[$(v)$]
an \textbf{Extreme R-SuperHyperTotal} if it's either of Extreme e-SuperHyperTotal, Extreme re-SuperHyperTotal, Extreme v-SuperHyperTotal, and Extreme rv-SuperHyperTotal and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperVertices in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperTotal;
 \item[$(vi)$]
a \textbf{Extreme R-SuperHyperTotal} if it's either of Extreme e-SuperHyperTotal, Extreme re-SuperHyperTotal, Extreme v-SuperHyperTotal, and Extreme rv-SuperHyperTotal and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperTotal;
 \item[$(vii)$]
an \textbf{Extreme R-SuperHyperTotal SuperHyperPolynomial} if it's either of Extreme e-SuperHyperTotal, Extreme re-SuperHyperTotal, Extreme v-SuperHyperTotal, and Extreme rv-SuperHyperTotal and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperTotal; and the Extreme power is corresponded to its Extreme coefficient;
 \item[$(viii)$]
a \textbf{Extreme SuperHyperTotal SuperHyperPolynomial} if it's either of Extreme e-SuperHyperTotal, Extreme re-SuperHyperTotal, Extreme v-SuperHyperTotal, and Extreme rv-SuperHyperTotal and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is  the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperTotal; and the Extreme power is corresponded to its Extreme coefficient.
\end{itemize}
\end{definition}

\begin{example}\label{136EXM1}
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E)$ in the mentioned Extreme Figures in every Extreme items.
 \begin{itemize}
 \item On the Figure \eqref{136NSHG1}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.  $E_1$ and $E_3$ are some empty Extreme  
 SuperHyperEdges but $E_2$ is a loop Extreme SuperHyperEdge and $E_4$ is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely, $E_4.$ The Extreme SuperHyperVertex, $V_3$ is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex, $V_3,$  \underline{\textbf{is}} excluded in every given Extreme SuperHyperTotal.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperTotal}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperTotal SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG2}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.  $E_1,E_2$ and $E_3$ are some empty Extreme SuperHyperEdges but $E_4$ is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely, $E_4.$ The Extreme SuperHyperVertex, $V_3$ is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex, $V_3,$  \underline{\textbf{is}} excluded in every given Extreme SuperHyperTotal.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperTotal}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperTotal SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG3}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperTotal}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperTotal SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG4}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-}}=\{E_4,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal SuperHyperPolynomial}}=2z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperTotal}}=\{V_1,V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperTotal SuperHyperPolynomial}}}=15z^2.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG5}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal}}=\{E_3\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal SuperHyperPolynomial}}=4z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperTotal}}=\{V_5\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperTotal SuperHyperPolynomial}}}=z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG6}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_{{i+1}_{i=0}^{9}}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}20z^{10}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_{{i+1}_{i=0}^{9}}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=20z^{10}.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG7},  the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_{12},E_{13},E_{14}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_{12},V_{13},V_{14}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=
 z^3.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG8}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_{12},V_{13},V_{14}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=
 \\&&
3\times4\times4 z^3.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG9}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_{{i+1}_{i=0}^{9}}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}10z^{10}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_{{i+1}_{i=0}^{9}}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=20z^{10}.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG10}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal}}=\{E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_{12},V_{13},V_{14}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=
 \\&&
3\times4\times4 z^3.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG11}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_1,E_6,E_7,E_8\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}=2z^4.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_1,V_5\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=
3z^2.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG12}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_1,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}=5z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_1,V^{i\neq 4,5,6}_{i_{i=1}^{8}}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=
z^5.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG13}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_3,E_9,E_6\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}=3z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_1,V_5\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=
3z^2.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG14}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_1,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}=z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_1,V_3\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=
2z^2.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG15}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_2,E_3,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_2,V_3,V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=
z^3.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG16}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_2,E_3,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_2,V_6,V_{17}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=
 \\&&
4\times3z^3.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG17}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
&&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_2,E_3,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_1,V_2,V_6,V_{17}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=
 \\&&
4\times3z^4.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG18}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
&&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_2,E_3,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_1,V_2,V_6,V_{17}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=
 \\&&
2\times4\times3z^4.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG19}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_{{i+2}_{i=0^{11}}}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}=11z^{10}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperTotal}}=\{V_{{i+2}_{i=0^{11}}}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperTotal SuperHyperPolynomial}}}=
11z^{10}.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG20}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_6,E_{10}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}=9z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_1,V\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}
   \\&&
  =|(|V|-1)z^2.
\end{eqnarray*}

 \item On the Figure \eqref{95NHG1}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_1,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}=2z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{V_1,V_2\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}=9z^2.
\end{eqnarray*}

 \item On the Figure \eqref{95NHG2}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperTotal, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_3,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}=z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperTotal}}=\{V_3,V_{10},V_6\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperTotal SuperHyperPolynomial}}}
  \\&&
=3\times6z^3.
\end{eqnarray*}

\end{itemize}
\end{example}
The previous Extreme approach apply on the upcoming Extreme results on Extreme SuperHyperClasses.
\begin{proposition}
Assume a connected Extreme SuperHyperPath $ESHP:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=
         \\&&=\{E_i\}_{i=1}^{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}-2}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}
 \\&&=z^{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}-2}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}
    \\&&=\{V^{EXTERNAL}_i\}_{i=1}^{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}-2}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}
  \\&&
=\prod |{V^{EXTERNAL}}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}
z^{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}-2}
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_2,E_2,
 \\&&V^{EXTERNAL}_3,E_3,
 \\&&\ldots
 \end{eqnarray*}
be a longest path taken from a connected Extreme SuperHyperPath $ESHP:(V,E).$ There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperTotal. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM18a}
In the Figure \eqref{136NSHG18a}, the connected Extreme SuperHyperPath $ESHP:(V,E),$ is highlighted and featured. The Extreme SuperHyperSet,  in the Extreme SuperHyperModel \eqref{136NSHG18a}, is the  SuperHyperTotal.

\end{example}

\begin{proposition}
Assume a connected Extreme SuperHyperCycle $ESHC:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=
         \\&&=\{E_i\}_{i=1}^{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}-2}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}
 \\&&=({|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}-1)
  \\&&
 z^{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}-2}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}
    \\&&=\{V^{EXTERNAL}_i\}_{i=1}^{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}-2}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}}
  \\&&
=\prod |{V^{EXTERNAL}}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}
z^{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}-2}
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_2,E_2,
 \\&&V^{EXTERNAL}_3,E_3,
 \\&&\ldots,
 \\&&{E}_{\frac{|E_^{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}-1}},{V^{EXTERNAL}}_{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}-1}}.
 \end{eqnarray*}
 be a longest path taken from a connected Extreme SuperHyperCycle $ESHC:(V,E).$ There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperTotal. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM19a}
In the Figure \eqref{136NSHG19a}, the connected Extreme SuperHyperCycle $NSHC:(V,E),$ is highlighted and featured. The obtained Extreme SuperHyperSet, in the Extreme SuperHyperModel \eqref{136NSHG19a},
is the Extreme  SuperHyperTotal.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperStar $ESHS:(V,E).$ Then  
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_i,E_j\in E_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal   SuperHyperPolynomial}}
\\&&=|i(i-1)~|~E_i\in E_{ESHG:(V,E)|_{\text{Extreme Cardinality}}}|z^2.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{CENTER,V_j\in V_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}=
\\&&
(|V_{ESHG:(V,E)|_{\text{Extreme Cardinality}}}|)~
\text{choose}~
(|V_{ESHG:(V,E)|_{\text{Extreme Cardinality}}}|-1)
\\&&
z^2.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
  \begin{eqnarray*}
 && P:V^{EXTERNAL}_i,E_i,CENTER,E_j.
 \end{eqnarray*}
  be a longest path taken a connected Extreme SuperHyperStar $ESHS:(V,E).$  There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperTotal. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM20a}
In the Figure \eqref{136NSHG20a}, the connected Extreme SuperHyperStar $ESHS:(V,E),$ is highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the  Extreme SuperHyperVertices of the connected Extreme SuperHyperStar $ESHS:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG20a}, is the  Extreme SuperHyperTotal.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperBipartite $ESHB:(V,E).$ Then
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}
\\&&=
\{E_a\in E_{{P_i}^{ESHG:(V,E)}},
\\&&
~\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}
\\&&=
z^{\min|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|}
\\&&
\text{where}~
\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|
\\&&
=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}
\\&&=\{V^{EXTERNAL}_a\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},V^{EXTERNAL}_b\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},~i\neq j\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal SuperHyperPolynomial}}
\\&&=\sum_{|V^{EXTERNAL}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}=(\sum_{i=|{P}^{ESHG:(V,E)}|} (|{P_i}^{ESHG:(V,E)}|\text{choose}~2)=z^2.
\end{eqnarray*}

\end{proposition}
\begin{proof}
 Let
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperBipartite $ESHB:(V,E).$
 There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperTotal. The latter is straightforward. Then there's no at least one SuperHyperTotal. Thus the notion of quasi may be up but the SuperHyperNotions based on SuperHyperTotal could be applied. There are only two SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the representative in the
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 is a longest SuperHyperTotal taken from a connected Extreme SuperHyperBipartite $ESHB:(V,E).$ Thus only some SuperHyperVertices and only minimum-Extreme-of-SuperHyperPart SuperHyperEdges are attained in any solution
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM21a}
In the Extreme Figure \eqref{136NSHG21a}, the connected Extreme SuperHyperBipartite $ESHB:(V,E),$ is Extreme highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Extreme Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperBipartite $ESHB:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG21a}, is the Extreme  SuperHyperTotal.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperMultipartite $ESHM:(V,E).$ Then
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}
\\&&=
\{E_a\in E_{{P_i}^{ESHG:(V,E)}},
\\&&
~\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal SuperHyperPolynomial}}
\\&&=
z^{\min|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|}
\\&&
\text{where}~
\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|
\\&&
=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}
\\&&=\{V^{EXTERNAL}_a\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},V^{EXTERNAL}_b\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},~i\neq j\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperTotal SuperHyperPolynomial}}
\\&&=\sum_{|V^{EXTERNAL}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}=(\sum_{i=|{P}^{ESHG:(V,E)}|} (|{P_i}^{ESHG:(V,E)}|\text{choose}~2)=z^2.
\end{eqnarray*}

\end{proposition}
\begin{proof}
 Let
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 is a longest SuperHyperTotal taken from a connected Extreme SuperHyperMultipartite $ESHM:(V,E).$  There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperTotal. The latter is straightforward.  Then there's no at least one SuperHyperTotal. Thus the notion of quasi may be up but the SuperHyperNotions based on SuperHyperTotal could be applied. There are only $z'$ SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the representative in the  
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperMultipartite $ESHM:(V,E).$ Thus only some SuperHyperVertices and only minimum-Extreme-of-SuperHyperPart SuperHyperEdges are attained in any solution
    \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperMultipartite $ESHM:(V,E).$ The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM22a}
In the Figure \eqref{136NSHG22a}, the connected Extreme SuperHyperMultipartite $ESHM:(V,E),$ is highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperMultipartite $ESHM:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG22a}, is the  Extreme SuperHyperTotal.

\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperWheel $ESHW:(V,E).$ Then,
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal}}=\{E_i,E_j\in E^{*}_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperTotal   SuperHyperPolynomial}}
\\&&=|i(i-1)~|~E_i\in E^{*}_{ESHG:(V,E)|_{\text{Extreme Cardinality}}}|z^2.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal}}=\{CENTER,V_j\in V_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperTotal SuperHyperPolynomial}}=
\\&&
(|V_{ESHG:(V,E)|_{\text{Extreme Cardinality}}}|)~
\text{choose}~
(|V_{ESHG:(V,E)|_{\text{Extreme Cardinality}}}|-1)
\\&&
z^2.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:V^{EXTERNAL}_i,E^{*}_i,CENTER,E_j.
 \end{eqnarray*}
  is a longest SuperHyperTotal taken from a connected Extreme SuperHyperWheel $ESHW:(V,E).$
 There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperTotal. The latter is straightforward. Then there's at least one SuperHyperTotal. Thus the notion of quasi isn't up and the SuperHyperNotions based on SuperHyperTotal could be applied. The unique embedded SuperHyperTotal proposes some longest SuperHyperTotal excerpt from some representatives. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM23a}
In the Extreme Figure \eqref{136NSHG23a}, the connected Extreme SuperHyperWheel $NSHW:(V,E),$ is Extreme highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperWheel $ESHW:(V,E),$
in the Extreme SuperHyperModel \eqref{136NSHG23a}, is the  Extreme SuperHyperTotal.
            \end{example}
    \section{
Extreme SuperHyperConnected But As The Extensions Excerpt From Dense And Super Forms}        
            
\begin{definition}(Different Extreme Types of Extreme SuperHyperConnected).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E).$ Consider an Extreme SuperHyperSet $V'=\{V_1,V_2,\ldots,V_s\}$ and $E'=\{E_1,E_2,\ldots,E_z\}.$ Then either $V'$ or $E'$ is called
\begin{itemize}
  \item[$(i)$] \textbf{Extreme e-SuperHyperConnected} if $\forall E_i\in E_{ESHG:(V,E)}\setminus E',~\exists E_j\in E',$ such that $V_a\in E_i,E_j;$ and $\forall E_i,E_j\in E',$ such that $V_a\not\in E_i,E_j;$
\item[$(ii)$] \textbf{Extreme re-SuperHyperConnected} if $\forall E_i\in E_{ESHG:(V,E)}\setminus E',~\exists E_j\in E',$ such that $V_a\in E_i,E_j;$ $\forall E_i,E_j\in E',$ such that $V_a\not\in E_i,E_j;$ and $|E_i|_{\text{NEUTROSOPIC CARDINALITY}}=|E_j|_{\text{NEUTROSOPIC CARDINALITY}};$
 \item[$(iii)$] \textbf{Extreme v-SuperHyperConnected} if $\forall V_i\in E_{ESHG:(V,E)}\setminus V',~\exists V_j\in V',$ such that $V_i,V_j\not\in E_a;$ and $\forall V_i,V_j\in V',$ such that $ V_i,V_j\not\in E_a;$
\item[$(iv)$]  \textbf{Extreme rv-SuperHyperConnected} if $\forall V_i\in E_{ESHG:(V,E)}\setminus V',~\exists V_j\in V',$ such that $V_i,V_j\in E_a;$ $\forall V_i,V_j\in V',$ such that $ V_i,V_j\not\in E_a;$ and $|V_i|_{\text{NEUTROSOPIC CARDINALITY}}=|V_j|_{\text{NEUTROSOPIC CARDINALITY}};$
\item[$(v)$] \textbf{Extreme SuperHyperConnected} if it's either of Extreme e-SuperHyperConnected, Extreme re-SuperHyperConnected, Extreme v-SuperHyperConnected, and Extreme rv-SuperHyperConnected.
\end{itemize}
\end{definition}


\begin{definition}((Extreme) SuperHyperConnected).\\
 Assume an Extreme SuperHyperGraph (NSHG) $S$
is a pair $S=(V,E).$ Consider an Extreme SuperHyperEdge (NSHE) $E=\{V_1,V_2,\ldots,V_s\}.$
Then $E$ is called
\begin{itemize}
 \item[$(i)$]
an \textbf{Extreme SuperHyperConnected} if it's either of Extreme e-SuperHyperConnected, Extreme re-SuperHyperConnected, Extreme v-SuperHyperConnected, and Extreme rv-SuperHyperConnected and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperEdges in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnected;
 \item[$(ii)$]
a \textbf{Extreme SuperHyperConnected} if it's either of Extreme e-SuperHyperConnected, Extreme re-SuperHyperConnected, Extreme v-SuperHyperConnected, and Extreme rv-SuperHyperConnected and $\mathcal{C}(NSHG)$ for a  Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality  consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnected;
 \item[$(iii)$]
an \textbf{Extreme SuperHyperConnected SuperHyperPolynomial} if it's either of Extreme e-SuperHyperConnected, Extreme re-SuperHyperConnected, Extreme v-SuperHyperConnected, and Extreme rv-SuperHyperConnected and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnected; and the Extreme power is corresponded to its Extreme coefficient;
 \item[$(iv)$]
a \textbf{Extreme SuperHyperConnected SuperHyperPolynomial} if it's either of Extreme e-SuperHyperConnected, Extreme re-SuperHyperConnected, Extreme v-SuperHyperConnected, and Extreme rv-SuperHyperConnected and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnected; and the Extreme power is corresponded to its Extreme coefficient;
\item[$(v)$]
an \textbf{Extreme R-SuperHyperConnected} if it's either of Extreme e-SuperHyperConnected, Extreme re-SuperHyperConnected, Extreme v-SuperHyperConnected, and Extreme rv-SuperHyperConnected and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of an Extreme SuperHyperSet $S$ of high Extreme cardinality of the Extreme SuperHyperVertices in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnected;
 \item[$(vi)$]
a \textbf{Extreme R-SuperHyperConnected} if it's either of Extreme e-SuperHyperConnected, Extreme re-SuperHyperConnected, Extreme v-SuperHyperConnected, and Extreme rv-SuperHyperConnected and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnected;
 \item[$(vii)$]
an \textbf{Extreme R-SuperHyperConnected SuperHyperPolynomial} if it's either of Extreme e-SuperHyperConnected, Extreme re-SuperHyperConnected, Extreme v-SuperHyperConnected, and Extreme rv-SuperHyperConnected and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnected; and the Extreme power is corresponded to its Extreme coefficient;
 \item[$(viii)$]
a \textbf{Extreme SuperHyperConnected SuperHyperPolynomial} if it's either of Extreme e-SuperHyperConnected, Extreme re-SuperHyperConnected, Extreme v-SuperHyperConnected, and Extreme rv-SuperHyperConnected and $\mathcal{C}(NSHG)$ for an Extreme SuperHyperGraph $NSHG:(V,E)$ is  the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet $S$ of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnected; and the Extreme power is corresponded to its Extreme coefficient.
\end{itemize}
\end{definition}

\begin{example}\label{136EXM1}
 Assume an Extreme SuperHyperGraph (NSHG) $S$ is a pair $S=(V,E)$ in the mentioned Extreme Figures in every Extreme items.
 \begin{itemize}
 \item On the Figure \eqref{136NSHG1}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.  $E_1$ and $E_3$ are some empty Extreme  
 SuperHyperEdges but $E_2$ is a loop Extreme SuperHyperEdge and $E_4$ is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely, $E_4.$ The Extreme SuperHyperVertex, $V_3$ is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex, $V_3,$  \underline{\textbf{is}} excluded in every given Extreme SuperHyperConnected.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG2}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.  $E_1,E_2$ and $E_3$ are some empty Extreme SuperHyperEdges but $E_4$ is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely, $E_4.$ The Extreme SuperHyperVertex, $V_3$ is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex, $V_3,$  \underline{\textbf{is}} excluded in every given Extreme SuperHyperConnected.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG3}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}}=3z.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG4}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_1,E_2,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperConnected}}=\{V_1,V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperConnected SuperHyperPolynomial}}}=15z^2.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG5}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_3\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected SuperHyperPolynomial}}=4z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{V_5\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}}=z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG6}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}=\{E_{{i+1}_{i=0}^{9}}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}20z^{10}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperConnected}}=\{V_{{i+1}_{i=0}^{9}}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperConnected SuperHyperPolynomial}}}=20z^{10}.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG7},  the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_{12},E_{13},E_{14}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{V_{12},V_{13},V_{14}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}}=
 z^3.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG8}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}=\{E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{V_{12},V_{13},V_{14}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}}=
 \\&&
3\times4\times4 z^3.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG9}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}=\{E_{{i+1}_{i=0}^{9}}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}10z^{10}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{V_{{i+1}_{i=11}^{19}},V_{22}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}}=20z^{10}.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG10}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_5\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{V_{12},V_{13},V_{14}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}}=
 \\&&
3\times4\times4 z^3.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG11}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}=\{E_1,E_6,E_7,E_8\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}=2z^4.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperConnected}}=\{V_1,V_5\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperConnected SuperHyperPolynomial}}}=
3z^2.
\end{eqnarray*}

 \item On the Figure \eqref{136NSHG12}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_1,E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected SuperHyperPolynomial}}=5z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperConnected}}=\{V_1,V^{i\neq 4,5,6}_{i_{i=1}^{8}}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperConnected SuperHyperPolynomial}}}=
z^5.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG13}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}=\{E_3,E_9,E_6\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}=3z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{V_1,V_5\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}}=
3z^2.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG14}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}}=
z.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG15}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}=\{E_2,E_3,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperConnected}}=\{V_2,V_3,V_4\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperConnected SuperHyperPolynomial}}}=
z^3.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG16}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_2,E_3,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{V_2,V_6,V_{17}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}}=
 \\&&
4\times3z^3.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG17}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
&&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}=\{E_2,E_3,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperConnected}}=\{V_1,V_2,V_6,V_{17}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperConnected SuperHyperPolynomial}}}=
 \\&&
4\times3z^4.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG18}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
&&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}=\{E_2,E_3,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}=z^3.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperConnected}}=\{V_1,V_2,V_6,V_{17}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperConnected SuperHyperPolynomial}}}=
 \\&&
2\times4\times3z^4.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG19}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}=\{E_{{i+2}_{i=0^{11}}}\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}=11z^{10}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperConnected}}=\{V_{{i+2}_{i=0^{11}}}\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperConnected SuperHyperPolynomial}}}=
11z^{10}.
\end{eqnarray*}

  \item On the Figure \eqref{136NSHG20}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_6\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected SuperHyperPolynomial}}=10z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}}
 =z.
\end{eqnarray*}

 \item On the Figure \eqref{95NHG1}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_2\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected SuperHyperPolynomial}}=z.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{V_1\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}}=10z.
\end{eqnarray*}

 \item On the Figure \eqref{95NHG2}, the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnected, is up. The Extreme Algorithm is Extremely straightforward.
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}=\{E_3,E_4\}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}=z^2.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperConnected}}=\{V_3,V_{10},V_6\}.
 \\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperConnected SuperHyperPolynomial}}}
  \\&&
=3\times6z^3.
\end{eqnarray*}

\end{itemize}
\end{example}
The previous Extreme approach apply on the upcoming Extreme results on Extreme SuperHyperClasses.
\begin{proposition}
Assume a connected Extreme SuperHyperPath $ESHP:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}=
         \\&&=\{E_i\}_{i=1}^{|{E_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}-2}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}
 \\&&=z^{{|E_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}-2}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperConnected}}
    \\&&=\{V^{EXTERNAL}_i\}_{i=1}^{{|E_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}-2}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperConnected SuperHyperPolynomial}}}
  \\&&
=\prod |{V^{EXTERNAL}}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}
z^{{|E_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}-2}
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_2,E_2,
 \\&&V^{EXTERNAL}_3,E_3,
 \\&&\ldots,
 \\&&{E}_{{|{E}_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}-1},{V^{EXTERNAL}}_{{|{E}_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}-1}.
 \end{eqnarray*}
be a longest path taken from a connected Extreme SuperHyperPath $ESHP:(V,E).$ There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperConnected. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM18a}
In the Figure \eqref{136NSHG18a}, the connected Extreme SuperHyperPath $ESHP:(V,E),$ is highlighted and featured. The Extreme SuperHyperSet,  in the Extreme SuperHyperModel \eqref{136NSHG18a}, is the  SuperHyperConnected.
\end{example}

\begin{proposition}
Assume a connected Extreme SuperHyperCycle $ESHC:(V,E).$ Then
\begin{eqnarray*}
 &&
          \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}=
         \\&&=\{E_i\}_{i=1}^{{|E_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}-2}.
 \\&&
 \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}
 \\&&=({|E_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}-1)
  \\&&
 z^{{|E_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}-2}.
 \\&&
   \mathcal{C}(NSHG)_{\text{Extreme R-Quasi-SuperHyperConnected}}
    \\&&=\{V^{EXTERNAL}_i\}_{i=1}^{{|E_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}-2}.
\\&&
  \mathcal{C}(NSHG)_{{\small\text{Extreme R-Quasi-SuperHyperConnected SuperHyperPolynomial}}}
  \\&&
=\prod |{V^{EXTERNAL}}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}
z^{{|E_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}-2}
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_2,E_2,
 \\&&V^{EXTERNAL}_3,E_3,
 \\&&\ldots,
 \\&&{E}_{{|E_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}-1},{V^{EXTERNAL}}_{{|E_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}-1}.
 \end{eqnarray*}
 be a longest path taken from a connected Extreme SuperHyperCycle $ESHC:(V,E).$ There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperConnected. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM19a}
In the Figure \eqref{136NSHG19a}, the connected Extreme SuperHyperCycle $NSHC:(V,E),$ is highlighted and featured. The obtained Extreme SuperHyperSet, in the Extreme SuperHyperModel \eqref{136NSHG19a},
is the Extreme  SuperHyperConnected.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperStar $ESHS:(V,E).$ Then  
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_i\in E_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected   SuperHyperPolynomial}}
\\&&=|i~|~E_i\in {|{E}_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}z.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected}}=\{CENTER\in V_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme R-SuperHyperConnected SuperHyperPolynomial}}=
z.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
  \begin{eqnarray*}
 && P:V^{EXTERNAL}_i,E_i,CENTER,E_j.
 \end{eqnarray*}
  be a longest path taken a connected Extreme SuperHyperStar $ESHS:(V,E).$  There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperConnected. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM20a}
In the Figure \eqref{136NSHG20a}, the connected Extreme SuperHyperStar $ESHS:(V,E),$ is highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the  Extreme SuperHyperVertices of the connected Extreme SuperHyperStar $ESHS:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG20a}, is the  Extreme SuperHyperConnected.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperBipartite $ESHB:(V,E).$ Then
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}
\\&&=
\{E_a\in E_{{P_i}^{ESHG:(V,E)}},
\\&&
~\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}
\\&&=
z^{\min|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|}
\\&&
\text{where}~
\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|
\\&&
=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme V-SuperHyperConnected}}
\\&&=\{V^{EXTERNAL}_a\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},V^{EXTERNAL}_b\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},~i\neq j\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme V-SuperHyperConnected SuperHyperPolynomial}}
\\&&=\sum_{|V^{EXTERNAL}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}=(\sum_{i=|{P}^{ESHG:(V,E)}|} (|{P_i}^{ESHG:(V,E)}|\text{choose}~2)=z^2.
\end{eqnarray*}

\end{proposition}
\begin{proof}
 Let
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperBipartite $ESHB:(V,E).$
 There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperConnected. The latter is straightforward. Then there's no at least one SuperHyperConnected. Thus the notion of quasi may be up but the SuperHyperNotions based on SuperHyperConnected could be applied. There are only two SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the representative in the
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 is a longest SuperHyperConnected taken from a connected Extreme SuperHyperBipartite $ESHB:(V,E).$ Thus only some SuperHyperVertices and only minimum-Extreme-of-SuperHyperPart SuperHyperEdges are attained in any solution
 \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM21a}
In the Extreme Figure \eqref{136NSHG21a}, the connected Extreme SuperHyperBipartite $ESHB:(V,E),$ is Extreme highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Extreme Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperBipartite $ESHB:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG21a}, is the Extreme  SuperHyperConnected.
\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperMultipartite $ESHM:(V,E).$ Then
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected}}
\\&&=
\{E_a\in E_{{P_i}^{ESHG:(V,E)}},
\\&&
~\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnected SuperHyperPolynomial}}
\\&&=
z^{\min|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|}
\\&&
\text{where}~
\forall {P_i}^{ESHG:(V,E)}, ~|{P_i}^{ESHG:(V,E)}|
\\&&
=\min_{i}|{P_i}^{ESHG:(V,E)}\in{P}^{ESHG:(V,E)}|\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme V-SuperHyperConnected}}
\\&&=\{V^{EXTERNAL}_a\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},V^{EXTERNAL}_b\in V^{EXTERNAL}_{{P_i}^{ESHG:(V,E)}},~i\neq j\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme V-SuperHyperConnected SuperHyperPolynomial}}
\\&&=\sum_{|V^{EXTERNAL}_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}=(\sum_{i=|{P}^{ESHG:(V,E)}|} (|{P_i}^{ESHG:(V,E)}|\text{choose}~2)=z^2.
\end{eqnarray*}

\end{proposition}
\begin{proof}
 Let
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 is a longest SuperHyperConnected taken from a connected Extreme SuperHyperMultipartite $ESHM:(V,E).$  There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperConnected. The latter is straightforward.  Then there's no at least one SuperHyperConnected. Thus the notion of quasi may be up but the SuperHyperNotions based on SuperHyperConnected could be applied. There are only $z'$ SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the representative in the  
   \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperMultipartite $ESHM:(V,E).$ Thus only some SuperHyperVertices and only minimum-Extreme-of-SuperHyperPart SuperHyperEdges are attained in any solution
    \begin{eqnarray*}
 && P:
 \\&&
 V^{EXTERNAL}_1,E_1,
 \\&&V^{EXTERNAL}_2,E_2
 \end{eqnarray*}
 is a longest path taken from a connected   Extreme SuperHyperMultipartite $ESHM:(V,E).$ The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM22a}
In the Figure \eqref{136NSHG22a}, the connected Extreme SuperHyperMultipartite $ESHM:(V,E),$ is highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperMultipartite $ESHM:(V,E),$ in the Extreme SuperHyperModel \eqref{136NSHG22a}, is the  Extreme SuperHyperConnected.

\end{example}
\begin{proposition}
Assume a connected Extreme SuperHyperWheel $ESHW:(V,E).$ Then,
\begin{eqnarray*}
&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected}}=\{E_i\in E^{*}_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme SuperHyperConnected SuperHyperPolynomial}}
\\&&=|i~|~E_i\in {|{E^{*}}_{ESHG:(V,E)}|}_{\text{Extreme Cardinality}}|z.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme V-SuperHyperConnected}}=\{CENTER\in V_{ESHG:(V,E)}\}.
\\&&
\mathcal{C}(NSHG)_{\text{Extreme V-SuperHyperConnected SuperHyperPolynomial}}=
z.
\end{eqnarray*}
\end{proposition}
\begin{proof}
 Let
 \begin{eqnarray*}
 && P:{V^{EXTERNAL}}_i,{E^{*}}_i,CENTER,E_j.
 \end{eqnarray*}
  is a longest SuperHyperConnected taken from a connected Extreme SuperHyperWheel $ESHW:(V,E).$
 There's a new way to redefine as
\begin{eqnarray*}
&&
V^{EXTERNAL}_i\sim V^{EXTERNAL}_j \equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ V^{EXTERNAL}_i,V^{EXTERNAL}_j \in E_z
\equiv
\\&& \exists! E_z\in E_{ESHG:(V,E)},~ \{V^{EXTERNAL}_i,V^{EXTERNAL}_j\} \subseteq E_z.
\end{eqnarray*}
The term ``EXTERNAL'' implies $|N(V^{EXTERNAL}_i)|\geq |N(V_j)|$ where $V_j$ is corresponded to $V^{EXTERNAL}_i$ in the literatures of SuperHyperConnected. The latter is straightforward. Then there's at least one SuperHyperConnected. Thus the notion of quasi isn't up and the SuperHyperNotions based on SuperHyperConnected could be applied. The unique embedded SuperHyperConnected proposes some longest SuperHyperConnected excerpt from some representatives. The latter is straightforward.
\end{proof}
\begin{example}\label{136EXM23a}
In the Extreme Figure \eqref{136NSHG23a}, the connected Extreme SuperHyperWheel $NSHW:(V,E),$ is Extreme highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperWheel $ESHW:(V,E),$
in the Extreme SuperHyperModel \eqref{136NSHG23a}, is the  Extreme SuperHyperConnected.
            \end{example}

 

\section{Background}
There are some scientific researches covering the topic of this research. In what follows, there are some discussion and literature reviews about them date back on March 09, 2023.
\\
The seminal paper and groundbreaking article is titled ``neutrosophic co-degree and neutrosophic degree alongside chromatic numbers in the setting of some classes related to neutrosophic hypergraphs'' in \textbf{Ref.} \cite{HG2} by Henry Garrett (2022). In this research article, a novel approach is implemented on SuperHyperGraph and neutrosophic SuperHyperGraph based on general forms without using neutrosophic classes of neutrosophic SuperHyperGraph. It's published in prestigious and fancy journal is entitled “Journal of Current Trends in Computer Science Research (JCTCSR)” with ISO abbreviation ``J Curr Trends Comp Sci Res'' in volume 1 and issue 1 with pages 06-14. The research article studies deeply with choosing neutrosophic hypergraphs instead of neutrosophic SuperHyperGraph. It's the breakthrough toward independent results based on initial background.
\\
The seminal paper and groundbreaking article is titled ``Super Hyper Dominating and Super Hyper Resolving on Neutrosophic Super Hyper Graphs and Their Directions in Game Theory and Neutrosophic Super Hyper Classes'' in \textbf{Ref.} \cite{HG3} by Henry Garrett (2022). In this research article, a novel approach is implemented on SuperHyperGraph and neutrosophic SuperHyperGraph based on fundamental SuperHyperNumber and using neutrosophic SuperHyperClasses of neutrosophic SuperHyperGraph. It's published in prestigious and fancy journal is entitled “Journal of Mathematical Techniques and Computational Mathematics(JMTCM)” with ISO abbreviation ``J Math Techniques Comput Math'' in volume 1 and issue 3 with pages 242-263. The research article studies deeply with choosing directly neutrosophic SuperHyperGraph and SuperHyperGraph. It's the breakthrough toward independent results based on initial background and fundamental SuperHyperNumbers.
\\
The seminal paper and groundbreaking article is titled ``Some Super Hyper Degrees and Co-Super Hyper Degrees on Neutrosophic Super Hyper Graphs And Super Hyper Graphs Alongside Applications in Cancer’s Treatments'' in \textbf{Ref.} \cite{HG133} by Henry Garrett (2023). In this research article, a novel approach is implemented on SuperHyperGraph and neutrosophic SuperHyperGraph based on fundamental notions and using vital tools in Cancer’s Treatments. It's published in prestigious and fancy journal is entitled “Journal of Mathematical Techniques and Computational Mathematics(JMTCM)” with ISO abbreviation ``J Math Techniques Comput Math'' in volume 2 and issue 1 with pages 35-47. The research article studies deeply with choosing directly neutrosophic SuperHyperGraph and SuperHyperGraph. It's the breakthrough toward independent results based on initial background and fundamental SuperHyperNumbers.
\\
In some articles are titled ``0039 | Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph'' in \textbf{Ref.} \cite{HG4} by Henry Garrett (2022),  ``0049 | (Failed)1-Zero-Forcing Number in Neutrosophic Graphs'' in \textbf{Ref.} \cite{HG5} by Henry Garrett (2022),  ``Extreme SuperHyperClique as the Firm Scheme of Confrontation under Cancer’s Recognition as the Model in The Setting of (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG6} by Henry Garrett (2022), ``Uncertainty On The Act And Effect Of Cancer Alongside The Foggy Positions Of Cells Toward Neutrosophic Failed SuperHyperClique inside Neutrosophic SuperHyperGraphs Titled Cancer’s Recognition'' in \textbf{Ref.} \cite{HG7} by Henry Garrett (2022), ``Neutrosophic Version Of Separates Groups Of Cells In Cancer’s Recognition On Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG8} by Henry Garrett (2022), ``The Shift Paradigm To Classify Separately The Cells and Affected Cells Toward The Totality Under Cancer’s Recognition By New Multiple Definitions On the Sets Polynomials Alongside Numbers In The (Neutrosophic) SuperHyperMatching Theory Based on SuperHyperGraph and Neutrosophic SuperHyperGraph'' in \textbf{Ref.} \cite{HG9} by Henry Garrett (2022), ``Breaking the Continuity and Uniformity of Cancer In The Worst Case of Full Connections With Extreme Failed SuperHyperClique In Cancer’s Recognition Applied in (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG10} by Henry Garrett (2022), ``Neutrosophic Failed SuperHyperStable as the Survivors on the Cancer’s Neutrosophic Recognition Based on Uncertainty to All Modes in Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG11} by Henry Garrett (2022), ``Extremism of the Attacked Body Under the Cancer's Circumstances Where Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG12} by Henry Garrett (2022), ``(Neutrosophic) 1-Failed SuperHyperForcing in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG13} by Henry Garrett (2022), ``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints'' in \textbf{Ref.} \cite{HG14} by Henry Garrett (2022),  ``Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition And Beyond'' in \textbf{Ref.} \cite{HG15} by Henry Garrett (2022),  ``(Neutrosophic) SuperHyperStable on Cancer’s Recognition by Well- SuperHyperModelled (Neutrosophic) SuperHyperGraphs
'' in \textbf{Ref.} \cite{HG16} by Henry Garrett (2022), ``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints'' in \textbf{Ref.} \cite{HG12} by Henry Garrett (2022), ``Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG17} by Henry Garrett (2022), ``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints'' in \textbf{Ref.} \cite{HG18} by Henry Garrett (2022),``(Neutrosophic) SuperHyperModeling of Cancer’s Recognitions Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances'' in \textbf{Ref.} \cite{HG19} by Henry Garrett (2022), ``(Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and SuperHyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling of Cancer’s Recognitions And Related (Neutrosophic) SuperHyperClasses'' in \textbf{Ref.} \cite{HG20} by Henry Garrett (2022), ``SuperHyperGirth on SuperHyperGraph and Neutrosophic SuperHyperGraph With SuperHyperModeling of Cancer’s Recognitions'' in \textbf{Ref.} \cite{HG21} by Henry Garrett (2022), ``Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs and SuperHyperGraphs Alongside Applications in Cancer’s Treatments'' in \textbf{Ref.} \cite{HG22} by Henry Garrett (2022), ``SuperHyperDominating and SuperHyperResolving on Neutrosophic SuperHyperGraphs And Their Directions in Game Theory and Neutrosophic SuperHyperClasses'' in \textbf{Ref.} \cite{HG23} by Henry Garrett (2022), ``SuperHyperMatching By (R-)Definitions And Polynomials To Monitor Cancer’s Recognition In Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG24} by Henry Garrett (2023), ``The Focus on The Partitions Obtained By Parallel Moves In The Cancer's Extreme Recognition With Different Types of Extreme SuperHyperMatching Set and Polynomial on (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG25} by Henry Garrett (2023), ``Extreme Failed SuperHyperClique Decides the Failures on the Cancer's Recognition in the Perfect Connections of Cancer's Attacks By SuperHyperModels Named (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG26} by Henry Garrett (2023), ``Indeterminacy On The All Possible Connections of Cells In Front of Cancer's Attacks In The Terms of Neutrosophic Failed SuperHyperClique on Cancer's Recognition called Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG27} by Henry Garrett (2023), ``Perfect Directions Toward Idealism in Cancer's Neutrosophic Recognition Forwarding Neutrosophic SuperHyperClique on Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG28} by Henry Garrett (2023), ``Demonstrating Complete Connections in Every Embedded Regions and Sub-Regions in the Terms of Cancer's Recognition and (Neutrosophic) SuperHyperGraphs With (Neutrosophic) SuperHyperClique'' in \textbf{Ref.} \cite{HG29} by Henry Garrett (2023), ``Different Neutrosophic Types of Neutrosophic Regions titled neutrosophic Failed SuperHyperStable in Cancer’s Neutrosophic Recognition modeled in the Form of Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG30} by Henry Garrett (2023), ``Using the Tool As (Neutrosophic) Failed SuperHyperStable To SuperHyperModel Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG31} by Henry Garrett (2023), ``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints'' in \textbf{Ref.} \cite{HG32} by Henry Garrett (2023), ``(Neutrosophic) SuperHyperStable on Cancer’s Recognition by Well-SuperHyperModelled (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG33} by Henry Garrett (2023), ``Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition And Beyond'' in \textbf{Ref.} \cite{HG34} by Henry Garrett (2022),  ``(Neutrosophic) 1-Failed SuperHyperForcing in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG35} by Henry Garrett (2022), ``Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG36} by Henry Garrett (2022), ``Basic Neutrosophic Notions Concerning SuperHyperDominating and Neutrosophic SuperHyperResolving in SuperHyperGraph'' in \textbf{Ref.} \cite{HG37} by Henry Garrett (2022), ``Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)''  in \textbf{Ref.} \cite{HG38} by Henry Garrett (2022), and \cite{HG94,HG942,HG95,HG952,HG96,HG962,HG97,HG972,HG98,HG982,HG106,HG107,HG111,HG112,HG115,HG116,HG120,HG121,HG122,HG123,HG124,HG125,HG126,HG127,HG128,HG129,HG130,HG131,HG132,HG133,HG134,HG135,HG136,HG137,HG138,HG139,HG140,HG141,HG142,HG143,HG144,HG145,HG146,HG147,HG148,HG149,HG150,HG151,HG152,HG153,HG154,HG155,HG156,HG157,HG158,HG159,HG160,HG161,HG162,HG163,HG164,HG165,HG166,HG167,HG168,HG169,HG170,HG171,HG172,HG173,HG174,HG175,HG176,HG177,HG178,HG179,HG180,HG181,HG182,HG183,HG184}, there are some endeavors to formalize the basic SuperHyperNotions about neutrosophic SuperHyperGraph and SuperHyperGraph.    
\\
Some scientific studies and scientific researches about neutrosophic graphs, are proposed as book in \textbf{Ref.} \cite{HG39} by Henry Garrett (2022) which is indexed by Google Scholar and has more than 3230 readers in Scribd. It's titled ``Beyond Neutrosophic Graphs'' and published by Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United State. This research book covers different types of notions and settings in neutrosophic graph theory and neutrosophic SuperHyperGraph theory.
\\
Also, some scientific studies and scientific researches about neutrosophic graphs, are proposed as book in \textbf{Ref.} \cite{HG40} by Henry Garrett (2022) which is indexed by Google Scholar and has more than 4117 readers in Scribd. It's titled ``Neutrosophic Duality'' and published by Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. This research book presents different types of notions SuperHyperResolving and SuperHyperDominating in the setting of duality in neutrosophic graph theory and neutrosophic SuperHyperGraph theory. This research book has scrutiny on the complement of the intended set and the intended set, simultaneously. It's smart to consider a set but acting on its complement that what's done in this research book which is popular in the terms of high readers in Scribd.
\\
See the seminal scientific researches \cite{HG2,HG3}. The formalization of the notions on the framework of notions In SuperHyperGraphs, Neutrosophic notions In SuperHyperGraphs theory, and (Neutrosophic) SuperHyperGraphs theory at \cite{HG4,HG5,HG6,HG7,HG8,HG9,HG10,HG11,HG12,HG13,HG14,HG15,HG16,HG17,HG18,HG19,HG20,HG21,HG22,HG23,HG24,HG25,HG26,HG27,HG28,HG29,HG30,HG31,HG32,HG33,HG34,HG35,HG36,HG37,HG38,HG94,HG942,HG95,HG952,HG96,HG962,HG97,HG972,HG98,HG982,HG106,HG107,HG111,HG112,HG115,HG116,HG120,HG121,HG122,HG123,HG124,HG125,HG126,HG127,HG128,HG129,HG130,HG131,HG132,HG133,HG134,HG135,HG136,HG137,HG138,HG139,HG140,HG141,HG142,HG143,HG144,HG145,HG146,HG147,HG148,HG149,HG150,HG151,HG152,HG153,HG154,HG155,HG156,HG157,HG158,HG159,HG160,HG161,HG162,HG163,HG164,HG165,HG166,HG167,HG168,HG169,HG170,HG171,HG172,HG173,HG174,HG175,HG176,HG177,HG178,HG179,HG180,HG181,HG182,HG183,HG184}. Two popular scientific research books in Scribd in the terms of high readers, 3230 and 4117 respectively,  on neutrosophic science is on \cite{HG39,HG40}.

 

 

 


--


\begin{thebibliography}{595}

\bibitem{HG2} Henry Garrett, ``\textit{Neutrosophic Co-degree and Neutrosophic Degree alongside Chromatic Numbers in the Setting of Some Classes Related to Neutrosophic Hypergraphs}'', J Curr Trends Comp Sci Res 1(1) (2022) 06-14.

\bibitem{HG3} Henry Garrett, “Super Hyper Dominating and Super Hyper Resolving on Neutrosophic Super Hyper Graphs and Their Directions in Game Theory and Neutrosophic Super Hyper Classes”, J Math Techniques Comput Math 1(3) (2022) 242-263. (doi: 10.33140/JMTCM.01.03.09)

\bibitem{HG133} Henry Garrett, “Some Super Hyper Degrees and Co-Super Hyper Degrees on Neutrosophic Super Hyper Graphs And Super Hyper Graphs Alongside Applications in Cancer’s Treatments”, J Math Techniques Comput Math 2(1) (2023) 35-47. (https://www.opastpublishers.com/open-access-articles/some-super-hyper-degrees-and-cosuper-hyper-degrees-on-neutrosophic-super-hyper-graphs-and-super-hyper-graphs-alongside-a.pdf)

\bibitem{HG4}
Garrett, Henry. ``\textit{0039 | Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph.}'' CERN European Organization for Nuclear Research - Zenodo, Nov. 2022. CERN European Organization for Nuclear Research, https://doi.org/10.5281/zenodo.6319942.
https://oa.mg/work/10.5281/zenodo.6319942

\bibitem{HG5}
Garrett, Henry. ``\textit{0049 | (Failed)1-Zero-Forcing Number in Neutrosophic Graphs.}'' CERN European Organization for Nuclear Research - Zenodo, Feb. 2022. CERN European Organization for Nuclear Research, https://doi.org/10.13140/rg.2.2.35241.26724.
https://oa.mg/work/10.13140/rg.2.2.35241.26724

\bibitem{HG6}
Henry Garrett, ``\textit{Extreme SuperHyperClique as the Firm Scheme of Confrontation under Cancer’s Recognition as the Model in The Setting of (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010308 (doi: 10.20944/preprints202301.0308.v1).

\bibitem{HG7}
Henry Garrett, ``\textit{Uncertainty On The Act And Effect Of Cancer Alongside The Foggy Positions Of Cells Toward Neutrosophic Failed SuperHyperClique inside Neutrosophic SuperHyperGraphs Titled Cancer’s Recognition}'', Preprints 2023, 2023010282 (doi: 10.20944/preprints202301.0282.v1).

\bibitem{HG8}
Henry Garrett, ``\textit{Neutrosophic Version Of Separates Groups Of Cells In Cancer’s Recognition On Neutrosophic SuperHyperGraphs}'', Preprints 2023, 2023010267 (doi: 10.20944/preprints202301.0267.v1).

\bibitem{HG9}
Henry Garrett, ``\textit{The Shift Paradigm To Classify Separately The Cells and Affected Cells Toward The Totality Under Cancer’s Recognition By New Multiple Definitions On the Sets Polynomials Alongside Numbers In The (Neutrosophic) SuperHyperMatching Theory Based on SuperHyperGraph and Neutrosophic SuperHyperGraph}'', Preprints 2023, 2023010265 (doi: 10.20944/preprints202301.0265.v1).

\bibitem{HG10}
Henry Garrett, ``\textit{Breaking the Continuity and Uniformity of Cancer In The Worst Case of Full Connections With Extreme Failed SuperHyperClique In Cancer’s Recognition Applied in (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010262,(doi: 10.20944/preprints202301.0262.v1).

\bibitem{HG11}
Henry Garrett, ``\textit{Neutrosophic Failed SuperHyperStable as the Survivors on the Cancer’s Neutrosophic Recognition Based on Uncertainty to All Modes in Neutrosophic SuperHyperGraphs}'', Preprints 2023, 2023010240 (doi: 10.20944/preprints202301.0240.v1).

\bibitem{HG12}
Henry Garrett, ``\textit{Extremism of the Attacked Body Under the Cancer's Circumstances Where Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010224, (doi: 10.20944/preprints202301.0224.v1).

\bibitem{HG13}
Henry Garrett, ``\textit{(Neutrosophic) 1-Failed SuperHyperForcing in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010105 (doi: 10.20944/preprints202301.0105.v1).

\bibitem{HG14}
Henry Garrett, ``\textit{Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints}'', Preprints 2023, 2023010088 (doi: 10.20944/preprints202301.0088.v1).

\bibitem{HG15}
Henry Garrett, ``\textit{Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition And Beyond}'', Preprints 2023, 2023010044

\bibitem{HG16}
Henry Garrett, ``\textit{(Neutrosophic) SuperHyperStable on Cancer’s Recognition by Well- SuperHyperModelled (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010043 (doi: 10.20944/preprints202301.0043.v1).

\bibitem{HG17}  Henry Garrett, \textit{``Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs''}, Preprints 2023, 2023010105 (doi: 10.20944/preprints202301.0105.v1).

\bibitem{HG18}  Henry Garrett, \textit{``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints''}, Preprints 2023, 2023010088 (doi: 10.20944/preprints202301.0088.v1).
\bibitem{HG19}  Henry Garrett, \textit{``(Neutrosophic) SuperHyperModeling of Cancer’s Recognitions Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances''}, Preprints 2022, 2022120549 (doi: 10.20944/preprints202212.0549.v1).
 \bibitem{HG20} Henry Garrett, ``\textit{(Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and SuperHyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling of Cancer’s Recognitions And Related (Neutrosophic) SuperHyperClasses}'', Preprints 2022, 2022120540 (doi: 10.20944/preprints202212.0540.v1).
\bibitem{HG21} Henry Garrett, ``\textit{SuperHyperGirth on SuperHyperGraph and Neutrosophic SuperHyperGraph With SuperHyperModeling of Cancer’s Recognitions}'', Preprints 2022, 2022120500 (doi: 10.20944/preprints202212.0500.v1).
\bibitem{HG22} Henry Garrett, ``\textit{Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs and SuperHyperGraphs Alongside Applications in Cancer’s Treatments}'', Preprints 2022, 2022120324 (doi: 10.20944/preprints202212.0324.v1).
\bibitem{HG23} Henry Garrett, ``\textit{SuperHyperDominating and SuperHyperResolving on Neutrosophic SuperHyperGraphs And Their Directions in Game Theory and Neutrosophic SuperHyperClasses}'', Preprints 2022, 2022110576 (doi: 10.20944/preprints202211.0576.v1).
\bibitem{HG184}
Henry Garrett, “New Ideas In Cancer's Recognition And Neutrosophic SuperHyperGraph By Space As Hyper Sparse On Super Spark”, ResearchGate 2023, (doi: 10.13140/RG.2.2.21756.21129).
\bibitem{HG183}
Henry Garrett, “New Ideas On Super Solidarity By Hyper Soul Of Space In Cancer's Recognition With (Extreme) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.30983.68009).
\bibitem{HG182}
Henry Garrett, “New Ideas In Cancer's Recognition And Neutrosophic SuperHyperGraph By Edge-Connectivity As Hyper Disclosure On Super Closure”, ResearchGate 2023, (doi: 10.13140/RG.2.2.28552.29445).
\bibitem{HG181}
Henry Garrett, “New Ideas On Super Uniform By Hyper Deformation Of Edge-Connectivity In Cancer's Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.10936.21761).
\bibitem{HG180}
Henry Garrett, “New Ideas In Cancer's Recognition And Neutrosophic SuperHyperGraph By Vertex-Connectivity As Hyper Leak On Super Structure”, ResearchGate 2023, (doi: 10.13140/RG.2.2.35105.89447).
\bibitem{HG179}
Henry Garrett, “New Ideas On Super System By Hyper Explosions Of Vertex-Connectivity In Cancer's Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.30072.72960).
\bibitem{HG178}
Henry Garrett, “New Ideas In Cancer's Recognition And Neutrosophic SuperHyperGraph By Tree-Decomposition As Hyper Forward On Super Returns”, ResearchGate 2023, (doi: 10.13140/RG.2.2.31147.52003).
\bibitem{HG177}
Henry Garrett, “New Ideas On Super Nodes By Hyper Moves Of Tree-Decomposition In Cancer's Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.32825.24163).
\bibitem{HG176}
Henry Garrett, “New Ideas In Cancer's Recognition And Neutrosophic SuperHyperGraph By Chord As Hyper Excellence On Super Excess”, ResearchGate 2023, (doi: 10.13140/RG.2.2.13059.58401).
\bibitem{HG175}
Henry Garrett, “New Ideas On Super Gap By Hyper Navigations Of Chord In Cancer's Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.11172.14720).
\bibitem{HG174}
Henry Garrett, “New Ideas In Cancer's Recognition And Neutrosophic SuperHyperGraph By SuperHyper(i,j)-Domination As Hyper Controller On Super Waves”, ResearchGate 2023, (doi: 10.13140/RG.2.2.22011.80165).
\bibitem{HG173}
Henry Garrett, “New Ideas On Super Coincidence By Hyper Routes Of SuperHyper(i,j)-Domination In Cancer's Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.30819.84003).
\bibitem{HG172}
Henry Garrett, “New Ideas In Cancer's Recognition And Neutrosophic SuperHyperGraph By SuperHyperEdge-Domination As Hyper Reversion On Super Indirection”, ResearchGate 2023, (doi: 10.13140/RG.2.2.10493.84962).
\bibitem{HG171}
Henry Garrett, “New Ideas On Super Obstacles By Hyper Model Of SuperHyperEdge-Domination In Cancer's Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.13849.29280).
\bibitem{HG170}
Henry Garrett, “New Ideas In Cancer's Recognition And Neutrosophic SuperHyperGraph By SuperHyperK-Domination As Hyper k-Actions On Super Patterns”, ResearchGate 2023, (doi: 10.13140/RG.2.2.19944.14086).
\bibitem{HG169}
Henry Garrett, “New Ideas On Super Harmony By Hyper k-Function Of SuperHyperK-Domination In Cancer's Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.23299.58404).
\bibitem{HG168}
Henry Garrett, “New Ideas In Cancer's Recognition And Neutrosophic SuperHyperGraph By SuperHyperK-Number As Hyper k-Partition On Super Layers”, ResearchGate 2023, (doi: 10.13140/RG.2.2.33103.76968).
\bibitem{HG167}
Henry Garrett, “New Ideas On Super Gradient By Hyper k-Class Of SuperHyperK-Number In Cancer's Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.23037.44003).
\bibitem{HG166}
Henry Garrett, “New Ideas In Cancer's Recognition And Neutrosophic SuperHyperGraph By SuperHyperOrder As Hyper Enumerations On Super Landmarks”, ResearchGate 2023, (doi: 10.13140/RG.2.2.35646.56641).
\bibitem{HG165}
Henry Garrett, “New Ideas On Super Analogous By Hyper Visions Of SuperHyperOrder In Cancer's Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.18030.48967).
\bibitem{HG164}
Henry Garrett, “New Ideas In Cancer's Recognition And Neutrosophic SuperHyperGraph By SuperHyperColoring As Hyper Categories On Super Neighbors”, ResearchGate 2023, (doi: 10.13140/RG.2.2.13973.81121).\bibitem{HG163}
Henry Garrett, “New Ideas On Super Relations By Hyper Identifications Of SuperHyperColoring In Cancer's Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.34106.47047).

\bibitem{HG163} Henry Garrett, “New Ideas On Super Relations By Hyper Identifications Of SuperHyperColoring In Cancer’s Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.34106.47047).

\bibitem{HG162} Henry Garrett, “New Ideas On Super Contradiction By Hyper Detection of SuperHyperDefensive In Cancer’s Neutrosophic Recognition and Neutrosophic SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.13397.09446).

\bibitem{HG161}
Henry Garrett, “New Ideas In Cancer’s Recognition And Neutrosophic SuperHyperGraph By SuperHyperDimension As Hyper Distinguishing On Super Distances”, ResearchGate 2023, (doi: 10.13140/RG.2.2.31956.88961).

\bibitem{HG160} Henry Garrett, “New Ideas On Super Locations By Hyper Differing Of SuperHyperDimension In Cancer’s Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.15179.67361).

\bibitem{HG159}
Henry Garrett, “New Ideas In Cancer’s Recognition And Neutrosophic SuperHyperGraph By SuperHyperDominating As Hyper Closing On Super Messy”, ResearchGate 2023, (doi: 10.13140/RG.2.2.21510.45125).
\bibitem{HG158}
Henry Garrett, “New Ideas On Super Missing By Hyper Searching Of SuperHyperDominating In Cancer’s Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.13121.84321).
\bibitem{HG157}
Henry Garrett, “New Ideas In Cancer’s Recognition And Neutrosophic SuperHyperGraph By SuperHyperConnected As Hyper Group On Super Surge”, ResearchGate 2023, (doi: 10.13140/RG.2.2.11758.69441).
\bibitem{HG156}
Henry Garrett, “New Ideas On Super Outbreak By Hyper Collections Of SuperHyperConnected In Cancer’s Recognition With (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.31891.35367).
\bibitem{HG155}
Henry Garrett, “New Ideas In Cancer’s Recognition And Neutrosophic SuperHyperGraph By SuperHyperTotal As Hyper Covering On Super Infections”, ResearchGate 2023, (doi: 10.13140/RG.2.2.19360.87048).
\bibitem{HG154}
Henry Garrett, “New Ideas On Super Extremism By Hyper Treatments Of SuperHyperTotal In Cancer’s Recognition with (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.32363.21286).
\bibitem{HG153}
  Henry Garrett, “New Ideas On Super Isolation By Hyper Perfectness Of SuperHyperPerfect In Cancer’s Recognition with (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.23266.81602).
\bibitem{HG152}
Henry Garrett, “New Ideas In Cancer’s Recognition And Neutrosophic SuperHyperGraph By SuperHyperPerfect As Hyper Idealism On Super Vacancy”, ResearchGate 2023, (doi: 10.13140/RG.2.2.19911.37285).
\bibitem{HG151}
Henry Garrett, “New Ideas In Cancer’s Recognition And Neutrosophic SuperHyperGraph By SuperHyperJoin As Hyper Separations On Super Sorts”, ResearchGate 2023, (doi: 10.13140/RG.2.2.11050.90569).
\bibitem{HG150}
Henry Garrett, “New Ideas On Super connections By Hyper disconnections Of SuperHyperJoin In Cancer’s Recognition with (Neutrosophic) SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.17761.79206).
\bibitem{HG149}
Henry Garrett, “New Ideas On Super Mixed-Devastations By Hyper Decisions Of SuperHyperDuality In Cancer’s Neutrosophic Recognition and Neutrosophic SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.34953.52320).
\bibitem{HG148}
Henry Garrett, “New Ideas In Cancer’s Recognition As (Neutrosophic) SuperHyperGraph By SuperHyperDuality As Hyper Imaginations On Super Mixed-Illustrations”, ResearchGate 2023, (doi: 10.13140/RG.2.2.33275.80161).
\bibitem{HG147}
Henry Garrett, “New Ideas In Cancer’s Recognition As (Neutrosophic) SuperHyperGraph By Path SuperHyperColoring As Hyper Correction On Super Faults”, ResearchGate 2023, (doi: 10.13140/RG.2.2.30182.50241).
\bibitem{HG146}
Henry Garrett, “New Ideas On Super Reflections By Hyper Rotations Of Path SuperHyperColoring In Cancer’s Neutrosophic Recognition and Neutrosophic SuperHyperGraph”, ResearchGate 2023, (doi: 10.13140/RG.2.2.33459.30243).
\bibitem{HG145}
Henry Garrett, “New Ideas As Hyper Deformations On Super Chains In Cancer’s Neutrosophic Recognition and Neutrosophic SuperHyperGraph By SuperHyperDensity”, ResearchGate 2023, (doi: 10.13140/RG.2.2.13444.60806).
\bibitem{HG144}
Henry Garrett, “New Ideas As Hyper Ignorance By SuperHyperDensity On Super Resistances In Cancer’s Neutrosophic Recognition and Neutrosophic SuperHyperGraph”, ResearchGate 2023, (doi:10.13140/RG.2.2.16800.05123).
\bibitem{HG143}
Henry Garrett, “New Research On Cancer’s Recognition and Neutrosophic SuperHyperGraph By Eulerian SuperHyperCycles and Hamiltonian Sets As Hyper Covering Versus Super separations-VI”, ResearchGate 2023, (doi: 10.13140/RG.2.2.29913.80482).
\bibitem{HG142}
Henry Garrett, “New Research On Cancer’s Recognition and Neutrosophic SuperHyperGraph By Eulerian SuperHyperCycles and Hamiltonian Sets As Hyper Covering Versus Super separations-V”, ResearchGate 2023, (doi: 10.13140/RG.2.2.33269.24809).                
\bibitem{HG141}
Henry Garrett, “New Research On Cancer’s Recognition and Neutrosophic SuperHyperGraph By Eulerian SuperHyperCycles and Hamiltonian Sets As Hyper Covering Versus Super separations-IV”, ResearchGate 2023, (doi: 10.13140/RG.2.2.34946.96960).
\bibitem{HG140}
Henry Garrett, “A Research On Cancer’s Recognition and Neutrosophic SuperHyperGraph By Eulerian SuperHyperCycles and Hamiltonian Sets As Hyper Covering Versus Super separations-III”, ResearchGate 2023, (doi: 10.13140/RG.2.2.14814.31040).
\bibitem{HG139}
Henry Garrett, “A Research On Cancer’s Recognition and Neutrosophic SuperHyperGraph By Eulerian SuperHyperCycles and Hamiltonian Sets As Hyper Covering Versus Super separations-II”, ResearchGate 2023, (doi: 10.13140/RG.2.2.15653.17125).
\bibitem{HG138}
Henry Garrett, “A Research On Cancer’s Recognition and Neutrosophic SuperHyperGraph By Eulerian SuperHyperCycles and Hamiltonian Sets As Hyper Covering Versus Super separations-I”, ResearchGate 2023, (doi: 10.13140/RG.2.2.25719.50089).
\bibitem{HG137}
Henry Garrett, “New Ideas On Super Disruptions In Cancer’s Extreme Recognition As Neutrosophic SuperHyperGraph By Hyper Plans Called SuperHyperConnectivities”, ResearchGate 2023, (doi: 10.13140/RG.2.2.29441.94562).
\bibitem{HG136}
Henry Garrett, “Cancer’s Neutrosophic Recognition As Neutrosophic SuperHyperGraph By SuperHyperConnectivities As Hyper Diagnosis On Super Mechanism”, ResearchGate 2023, (doi: 10.13140/RG.2.2.17252.24968).
\bibitem{HG135}
  Henry Garrett,“Cancer’s Recognition and (Neutrosophic) SuperHyperGraph By the Criteria of Eulerian and Hamiltonian Type-Sets As Hyper Modified Cycles On Super Mess”, ResearchGate 2023,(doi: 10.13140/RG.2.2.16652.59525).
\bibitem{HG134}
Henry Garrett,“Eulerian and Hamiltonian In Cancer’s Neutrosophic Recognition and Neutrosophic SuperHyperGraph On Super Interactions By Hyper Extensions of Cycles”, ResearchGate 2023,(doi: 10.13140/RG.2.2.34583.24485).

\bibitem{HG133}  Henry Garrett, “Some Super Hyper Degrees and Co-Super Hyper Degrees on Neutrosophic Super Hyper Graphs And Super Hyper Graphs Alongside Applications in Cancer’s Treatments”, J Math Techniques Comput Math 2(1) (2023) 35-47.

\bibitem{HG132} Henry Garrett,“SuperHyperGirth Type-Results on extreme SuperHyperGirth theory and (Neutrosophic) SuperHyperGraphs Toward Cancer’s extreme Recognition”, Preprints 2023, 2023010396 (doi: 10.20944/preprints202301.0396.v1).

\bibitem{HG131} Henry Garrett,“Neutrosophic SuperHyperGraphs Warns Hyper Landmark of neutrosophic SuperHyperGirth In Super Type-Versions of Cancer’s neutrosophic Recognition”, Preprints 2023, 2023010395 (doi: 10.20944/preprints202301.0395.v1).

\bibitem{HG130} Henry Garrett,“The Constructions of (Neutrosophic) SuperHyperGraphs on the Cancer’s Recognition in The Confrontation With Super Attacks In Hyper Situations By Implementing (Neutrosophic) 1-Failed SuperHyperForcing in The Technical Approaches to Neutralize SuperHyperViews”, ResearchGate 2023, (doi: 10.13140/RG.2.2.26240.51204).

\bibitem{HG129} Henry Garrett,“(Neutrosophic) 1-Failed SuperHyperForcing As the Entrepreneurs on Cancer’s Recognitions To Fail Forcing Style As the Super Classes With Hyper Effects In The Background of the Framework is So-Called (Neutrosophic) SuperHyperGraphs”, ResearchGate 2023, (doi: 10.13140/RG.2.2.12818.73925).

\bibitem{HG128} Henry Garrett,“Super Actions On The Types of Hyper Levels In The Sensible Neutrosophic SuperHyperGirth On Cancer’s Neutrosophic Recognition and Neutrosophic SuperHyperGraph”, ResearchGate 2023,(doi: 10.13140/RG.2.2.26836.88960).

\bibitem{HG127} Henry Garrett,“SuperHyperGirth Approaches on the Super Challenges on the Cancer’s Recognition In the Hyper Model of (Neutrosophic) SuperHyperGraph”, ResearchGate 2023,(doi: 10.13140/RG.2.2.36745.93289).

\bibitem{HG126}  Henry Garrett,“Extreme SuperHyperClique as the Firm Scheme of Confrontation under Cancer’s Recognition as the Model in The Setting of (Neutrosophic) SuperHyperGraphs”, Preprints 2023, 2023010308 (doi: 10.20944/preprints202301.0308.v1).


\bibitem{HG125} Henry Garrett,“Uncertainty On The Act And Effect Of Cancer Alongside The Foggy Positions Of Cells Toward Neutrosophic Failed SuperHyperClique inside Neutrosophic SuperHyperGraphs Titled Cancer’s Recognition”, Preprints 2023, 2023010282 (doi: 10.20944/preprints202301.0282.v1).

\bibitem{HG124}  Henry Garrett,“Neutrosophic Version Of Separates Groups Of Cells In Cancer’s Recognition On Neutrosophic SuperHyperGraphs”, Preprints 2023, 2023010267 (doi: 10.20944/preprints202301.0267.v1).).

\bibitem{HG123}  Henry Garrett, “The Shift Paradigm To Classify Separately The Cells and Affected Cells Toward The Totality Under Cancer’s Recognition By New Multiple Definitions On the Sets Polynomials Alongside Numbers In The (Neutrosophic) SuperHyperMatching Theory Based on SuperHyperGraph and Neutrosophic SuperHyperGraph”, Preprints 2023, 2023010265 (doi: 10.20944/preprints202301.0265.v1).

\bibitem{HG122} Henry Garrett,“Breaking the Continuity and Uniformity of Cancer In The Worst Case of Full Connections With Extreme Failed SuperHyperClique In Cancer’s Recognition Applied in (Neutrosophic) SuperHyperGraphs”, Preprints 2023, 2023010262,(doi: 10.20944/preprints202301.0262.v1).

\bibitem{HG121}  Henry Garrett, “Neutrosophic Failed SuperHyperStable as the Survivors on the Cancer’s Neutrosophic Recognition Based on Uncertainty to All Modes in Neutrosophic SuperHyperGraphs”, Preprints 2023, 2023010240 (doi: 10.20944/preprints202301.0240.v1).

\bibitem{HG120} Henry Garrett, “Extremism of the Attacked Body Under the Cancer’s Circumstances Where Cancer’s Recognition Titled (Neutrosophic) SuperHyperGraphs”, Preprints 2023, 2023010224, (doi: 10.20944/preprints202301.0224.v1).


\bibitem{HG24} Henry Garrett,``\textit{SuperHyperMatching By (R-)Definitions And Polynomials To Monitor Cancer’s Recognition In Neutrosophic SuperHyperGraphs}'', ResearchGate 2023,(doi: 10.13140/RG.2.2.35061.65767).

\bibitem{HG25} Henry Garrett,``\textit{The Focus on The Partitions Obtained By Parallel Moves In The Cancer's Extreme Recognition With Different Types of Extreme SuperHyperMatching Set and Polynomial on (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.18494.15680).

\bibitem{HG26} Henry Garrett,``\textit{Extreme Failed SuperHyperClique Decides the Failures on the Cancer's Recognition in the Perfect Connections of Cancer's Attacks By SuperHyperModels Named (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.32530.73922).

\bibitem{HG27} Henry Garrett,``\textit{Indeterminacy On The All Possible Connections of Cells In Front of Cancer's Attacks In The Terms of Neutrosophic Failed SuperHyperClique on Cancer's Recognition called Neutrosophic SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.15897.70243).

\bibitem{HG116}  Henry Garrett,“Extreme Failed SuperHyperClique Decides the Failures on the Cancer’s Recognition in the Perfect Connections of Cancer’s Attacks By SuperHyperModels Named (Neutrosophic) SuperHyperGraphs”, ResearchGate 2023, (doi: 10.13140/RG.2.2.32530.73922).

\bibitem{HG115}  Henry Garrett, “(Neutrosophic) 1-Failed SuperHyperForcing in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs”, Preprints 2023, 2023010105 (doi: 10.20944/preprints202301.0105.v1).

\bibitem{HG28} Henry Garrett,``\textit{Perfect Directions Toward Idealism in Cancer's Neutrosophic Recognition Forwarding Neutrosophic SuperHyperClique on Neutrosophic SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.30092.80004).

\bibitem{HG29} Henry Garrett,``\textit{Demonstrating Complete Connections in Every Embedded Regions and Sub-Regions in the Terms of Cancer's Recognition and (Neutrosophic) SuperHyperGraphs With (Neutrosophic) SuperHyperClique}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.23172.19849).

\bibitem{HG112}  Henry Garrett, “Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs”, Preprints 2023, 2023010105 (doi: 10.20944/preprints202301.0105.v1).

\bibitem{HG111} Henry Garrett, “Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints”, Preprints 2023, 2023010088 (doi: 10.20944/preprints202301.0088.v1).

\bibitem{HG30} Henry Garrett,``\textit{Different Neutrosophic Types of Neutrosophic Regions titled neutrosophic Failed SuperHyperStable in Cancer’s Neutrosophic Recognition modeled in the Form of Neutrosophic SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.17385.36968).

\bibitem{HG107} Henry Garrett, “Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition And Beyond”, Preprints 2023, 2023010044

\bibitem{HG106} Henry Garrett, “(Neutrosophic) SuperHyperStable on Cancer’s Recognition by Well- SuperHyperModelled (Neutrosophic) SuperHyperGraphs”, Preprints 2023, 2023010043 (doi: 10.20944/preprints202301.0043.v1).


\bibitem{HG31} Henry Garrett, ``\textit{Using the Tool As (Neutrosophic) Failed SuperHyperStable To SuperHyperModel Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.28945.92007).

\bibitem{HG32} Henry Garrett, ``\textit{Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.11447.80803).

\bibitem{HG33} Henry Garrett, ``\textit{(Neutrosophic) SuperHyperStable on Cancer’s Recognition by Well-SuperHyperModelled (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.35774.77123).

\bibitem{HG34} Henry Garrett, ``\textit{Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition And Beyond}'', ResearchGate 2022, (doi: 10.13140/RG.2.2.36141.77287).

\bibitem{HG35} Henry Garrett, ``\textit{(Neutrosophic) 1-Failed SuperHyperForcing in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2022, (doi: 10.13140/RG.2.2.29430.88642).

\bibitem{HG36} Henry Garrett, ``\textit{Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2022, (doi: 10.13140/RG.2.2.11369.16487).

\bibitem{HG982}  Henry Garrett, “(Neutrosophic) SuperHyperModeling of Cancer’s Recognitions Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances”, Preprints 2022, 2022120549 (doi: 10.20944/preprints202212.0549.v1).

\bibitem{HG98}  Henry Garrett, “(Neutrosophic) SuperHyperModeling of Cancer’s Recognitions Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances”, ResearchGate 2022, (doi: 10.13140/RG.2.2.19380.94084).


\bibitem{HG972}  Henry Garrett, “(Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and SuperHyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling of Cancer’s Recognitions And Related (Neutrosophic) SuperHyperClasses”, Preprints 2022, 2022120540 (doi: 10.20944/preprints202212.0540.v1).


\bibitem{HG97}  Henry Garrett, “(Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and SuperHyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling of Cancer’s Recognitions And Related (Neutrosophic) SuperHyperClasses”, ResearchGate 2022, (doi: 10.13140/RG.2.2.14426.41923).


\bibitem{HG962} Henry Garrett, “SuperHyperGirth on SuperHyperGraph and Neutrosophic SuperHyperGraph With SuperHyperModeling of Cancer’s Recognitions”, Preprints 2022, 2022120500 (doi: 10.20944/preprints202212.0500.v1).


\bibitem{HG96} Henry Garrett, “SuperHyperGirth on SuperHyperGraph and Neutrosophic SuperHyperGraph With SuperHyperModeling of Cancer’s Recognitions”, ResearchGate 2022 (doi: 10.13140/RG.2.2.20993.12640).


\bibitem{HG952}  Henry Garrett,“Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs and SuperHyperGraphs Alongside Applications in Cancer’s Treatments”, Preprints 2022, 2022120324 (doi: 10.20944/preprints202212.0324.v1).


\bibitem{HG95} Henry Garrett, “Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs And SuperHyperGraphs Alongside Applications in Cancer’s Treatments”, ResearchGate 2022 (doi: 10.13140/RG.2.2.23123.04641).

\bibitem{HG942}  Henry Garrett, “SuperHyperDominating and SuperHyperResolving on Neutrosophic SuperHyperGraphs And Their Directions in Game Theory and Neutrosophic SuperHyperClasses”, Preprints 2022, 2022110576 (doi: 10.20944/preprints202211.0576.v1).


\bibitem{HG94} Henry Garrett, “SuperHyperDominating and SuperHyperResolving on Neutrosophic SuperHyperGraphs And Their Directions in Game Theory and Neutrosophic SuperHyperClasses”, ResearchGate 2022 (doi: 10.13140/RG.2.2.23324.56966).

\bibitem{HG37}  Henry Garrett, \textit{``Basic Neutrosophic Notions Concerning SuperHyperDominating and Neutrosophic SuperHyperResolving in SuperHyperGraph''}, ResearchGate 2022 (doi: 10.13140/RG.2.2.29173.86244).

\bibitem{HG38} Henry Garrett, ``\textit{Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)}'', ResearchGate 2022 (doi: 10.13140/RG.2.2.25385.88160).

\bibitem{HG39} Henry Garrett, (2022). ``\textit{Beyond Neutrosophic Graphs}'', Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United States. ISBN: 979-1-59973-725-6 (http://fs.unm.edu/BeyondNeutrosophicGraphs.pdf).
      
 \bibitem{HG40} Henry Garrett, (2022). ``\textit{Neutrosophic Duality}'', Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. ISBN: 978-1-59973-743-0 (http://fs.unm.edu/NeutrosophicDuality.pdf).  

\end{thebibliography}
\end{document}

Files

Files (2.9 MB)

Name Size Download all
md5:0966d326176574dcb859702607cce6ef
2.9 MB Download