Published March 3, 2023 | Version v1
Journal article Restricted

Dual domestications and origin of traits in grapevine evolution

Description

Dong1, Yang, Duan1, Shengchang, Xia, Qiuju, Liang, Zhenchang, Dong1, Xiao, Margaryan, Kristine, Musayev, Mirza, Goryslavets, Svitlana, Zduni, Goran, Bert, Pierre-François, Lacombe11, Thierry, Maul1, Erika, Nick, Peter, Bitskinashvili, Kakha, Bisztray, György Dénes, Drori, Elyashiv, Lorenzis, Gabriella De, Cunha, Jorge, Popescu, Carmen Florentina, Arroyo-Garcia, Rosa, Arnold, Claire, Ergül, Ali, Zhu1, Yifan, Ma, Chao, Wang, Shufen, Liu1, Siqi, Tang, Liu, Wang, Chunping, Li, Dawei, Pan, Yunbing (2023): Dual domestications and origin of traits in grapevine evolution. Science 379: 892-901, DOI: 10.1126/science.add8655

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FF9BFFDDFF91CB78FF97FA75FF982835

References

  • P. E. McGovern, U. Hartung, V. R. Badler, D. L. Glusker, L. J. Exner, Expedition 39, 3-21 (1997).
  • 2. P. This, T. Lacombe, M. R. Thomas, Trends Genet. 22, 511-519 (2006).
  • 3. F. Grassi, G. De Lorenzis, Int. J. Mol. Sci. 22, 4518 (2021).
  • 4. D. Cantu, M. A. Walker, The Grape Genome (Springer Nature, 2019).
  • 5. D. Zohary, M. Hopf, E. Weiss, Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin (Oxford Univ. Press, 2012).
  • 6. S. Myles et al., Proc. Natl. Acad. Sci. U.S.A. 108, 3530-3535 (2011).
  • 7. Y. Zhou, M. Massonnet, J. S. Sanjak, D. Cantu, B. S. Gaut, Proc. Natl. Acad. Sci. U.S.A. 114, 11715-11720 (2017).
  • 8. Z. Liang et al., Nat. Commun. 10, 1190 (2019).
  • 9. A. Sivan et al., Plants People Planet 3, 414-427 (2021).
  • 10. S. Freitas et al., Sci. Adv. 7, eabi8584 (2021).
  • 11. G. Magris et al., Nat. Commun. 12, 7240 (2021).
  • 12. S. Riaz et al., BMC Plant Biol. 18, 137 (2018).
  • 13. R. Arroyo-Garcia et al., Mol. Ecol. 15, 3707-3714 (2006).
  • 14. P. McGovern et al., Proc. Natl. Acad. Sci. U.S.A. 114, E10309-E10318 (2017).
  • 15. J. Ramos-Madrigal et al., Nat. Plants 5, 595-603 (2019).
  • 17. M. J. Roach et al., PLOS Genet. 14, e1007807 (2018).
  • T. Lacombe et al., Theor. Appl. Genet. 126, 401-414 (2013).
  • 19. R. Bacilieri et al., BMC Plant Biol. 13, 25-25 (2013).
  • 20. F. Mercati et al., Front. Plant Sci. 12, 692661 (2021).
  • 21. R. Hosfield, J. Cole, Ouat. Sci. Rev. 190, 148-160 (2018).
  • 22. A. Timmermann et al., Nature 604, 495-501 (2022).
  • 23. E. C. Corrick et al., Science 369, 963-969 (2020).
  • 24. M. Engel et al., Ouat. Int. 266, 131-141 (2012).
  • 25. C. J. Stevens et al., Holocene 26, 1541-1555 (2016).
  • 26. I. Lazaridis et al., Nature 536, 419-424 (2016).
  • 27. C.-C. Wang et al., Nat. Commun. 10, 590 (2019).
  • 28. R. Pinhasi, J. Fort, A. J. Ammerman, PLOS Biol. 3, e410 (2005).
  • 29. I. Mathieson et al., Nature 555, 197-203 (2018).
  • 30. R. Fregel et al., Proc. Natl.Acad. Sci.U.S.A. 115, 6774-6779 (2018).
  • 31. I. Olalde et al., Science 363, 1230-1234 (2019).
  • 32. S. Brunel et al., Proc. Natl. Acad. Sci. U.S.A. 117, 12791-12798 (2020).
  • 33. C. Zou et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2023548118 (2021).
  • F. Emanuelli et al., BMC Plant Biol. 10, 241-241 (2010).
  • 35. S. Kobayashi, N. Goto-Yamamoto, H. Hirochika, Science 304, 982-982 (2004).
  • 36. A. R. Walker et al., Plant J. 49, 772-785 (2007).
  • 37. A. R. Walker, E. Lee, S. P. Robinson, Plant Mol. Biol. 62, 623-635 (2006).
  • 38. P. J. Richerson, R. Boyd, R. L. Bettinger, Am. Antiq. 66, 387-411 (2001).
  • 39. R. G. Allaby, C. J. Stevens, L. Kistler, D. Q. Fuller, Trends Ecol. Evol. 37, 268-279 (2022).
  • 40. R. S. Meyer, M. D. Purugganan, Nat. Rev. Genet. 14, 840-852 (2013).