Published March 2, 2023
| Version v1
Dataset
Open
Multi-Task Automatic Synthesizer Programming Preset Dataset
Description
This data set contains different training, test, and validation data used for training the multi-task automatic synthesizer programming models in the 2023 ICASSP paper "Exploring Approaches to Multi-Task Automatic Synthesizer Programming". Data is stored in .npy (numpy pickled data) format. Files are organized with <split>_<type>.npy, where <split> is the data split (train, test, or valid) and <type> is the type of data:
- serum_params are parameters for Serum data (these are already one hot encoded)
- serum_mask are masks for Serum parameters
- diva_params are parameters for Diva data (these are already one hot encoded)
- diva_mask are masks for Diva parameters
- tyrell_params are parameters for TyrellN6 data (these are already one hot encoded)
- tyrell_mask are masks for TyrellN6 parameters
- hpss are labels that indicate the harmonic percentage of this preset 20 means 0-20%, 40 means 20-40%, 60 means 40-60%, 80 means 60-80%, and 100 means 80-100%,
- mask_single are mask for the single decoder model
- mels are mel spectrograms
- name are names of the preset
- params are the parameters of the preset
- params_single are parameters for the single decoder model
- synth are strings of which synthesizer is used
Files
Files
(18.8 GB)
Name | Size | Download all |
---|---|---|
md5:2dfe36cf171160832795680abdbae072
|
44.2 MB | Download |
md5:0ed935ae3f6863971e4d722975fd0264
|
44.2 MB | Download |
md5:0b0aa54511cfb5efc754de95cdbd6067
|
58.4 kB | Download |
md5:8094dcbc7de9c6e3a78f7edd47431db3
|
44.2 MB | Download |
md5:08b00f136c829e21a826da27daaf4e73
|
1.6 GB | Download |
md5:f5a7e9b86e7caf9f260559caeda9b2b5
|
1.2 MB | Download |
md5:f46a5f22f85a0d299b933cfcfd21e58f
|
2.5 MB | Download |
md5:d0de11b6955d9b0462bd9c199640034b
|
44.2 MB | Download |
md5:f8202922d2e98c4f7aa1253e2ba6a261
|
28.0 MB | Download |
md5:4e3aaea9de5dc0e6eb2285ec6a2115a3
|
28.0 MB | Download |
md5:e925e55ae39013dc3e40b9f21b50ea03
|
174.9 kB | Download |
md5:6e0ec65fc41ba9a50928996788f3fc11
|
19.1 MB | Download |
md5:68f5aae39b9cc5da77599fc1e6f7771a
|
19.1 MB | Download |
md5:ffbff0b3ee5da6bcf58469955e1cd77f
|
353.8 MB | Download |
md5:d2ebae0529e35585208dc400a2e333b2
|
353.8 MB | Download |
md5:af6fef4fc387f8968f256395657f0b39
|
466.2 kB | Download |
md5:a1d3db135cc74d596e386fb1b1d3cd6f
|
353.8 MB | Download |
md5:3e0cc68df02cde1cf42f009e97fd432a
|
12.9 GB | Download |
md5:f47a06645f7d80766340d907e3c140e7
|
13.5 MB | Download |
md5:2be9a327c9c1f432f7f8c656f6336703
|
20.4 MB | Download |
md5:8dabe789bfb64175791b6a10af5623da
|
353.8 MB | Download |
md5:2c2793b4b9cc5e59636dc73ab56bd88b
|
223.7 MB | Download |
md5:8a526630802eb715ebffa817fd8422c5
|
223.7 MB | Download |
md5:a5bc859ad469284d6247049f90e027d7
|
1.4 MB | Download |
md5:b0e92b0b653828b20a08bc3a24600d44
|
152.4 MB | Download |
md5:56ab988e53a115e99604832f1dc598cd
|
152.4 MB | Download |
md5:6d8bb8e715e4763ce91ec5186764fd7d
|
44.2 MB | Download |
md5:98a1eb41458433bda09ca1ed62069b40
|
44.2 MB | Download |
md5:fa69586d4d3f209ca9cde898b5df6b06
|
58.4 kB | Download |
md5:260a3165231d8f5c17650401fc479715
|
44.2 MB | Download |
md5:fef95681aa87bcafde2aa97935365e04
|
1.6 GB | Download |
md5:29b05703e7cf7eaea847c4e20f02d7b0
|
1.1 MB | Download |
md5:95b024910f2f7b8c21c0104e64632a2f
|
2.5 MB | Download |
md5:9e9e5183b789eb1d4730ca865f458992
|
44.2 MB | Download |
md5:895bdbafbb7d0244014c1c38eda75248
|
28.0 MB | Download |
md5:c6b25b69b088868bd924c151cec28515
|
28.0 MB | Download |
md5:d1edad8b99f1207d5b9ad273778ce72a
|
174.9 kB | Download |
md5:a8ed482dc4bd16d387b8f60b116e37f6
|
19.1 MB | Download |
md5:7fde1e60734421ca9713cc0311f23fb2
|
19.1 MB | Download |