File uploads: We have fixed an issue which caused file uploads to fail. We apologise for the inconvenience it may have caused.

Published December 5, 2022 | Version v1
Conference paper Open

TAME: Attention Mechanism Based Feature Fusion for Generating Explanation Maps of Convolutional Neural Networks

  • 1. CERTH-ITI

Description

The apparent "black box" nature of neural networks is a barrier to adoption in applications where explainability is essential. This paper presents TAME (Trainable Attention Mechanism for Explanations) 1 , a method for generating explanation maps with a multi-branch hierarchical attention mechanism. TAME combines a target model’s feature maps from multiple layers using an attention mechanism, transforming them into an explanation map. TAME can easily be applied to any convolutional neural network (CNN) by streamlining the optimization of the attention mechanism’s training method and the selection of target model’s feature maps. After training, explanation maps can be computed in a single forward pass. We apply TAME to two widely used models, i.e. VGG-16 and ResNet-50, trained on ImageNet and show improvements over previous top-performing methods. We also provide a comprehensive ablation study comparing the performance of different variations of TAME’s architecture. Source code is made publicly available at: https://github.com/bmezaris/TAME

Files

ism2022a_preprint.pdf

Files (5.0 MB)

Name Size Download all
md5:7c2a115794163fa62ed02691affa6252
5.0 MB Preview Download

Additional details

Funding

CRiTERIA – Comprehensive data-driven Risk and Threat Assessment Methods for the Early and Reliable Identification, Validation and Analysis of migration-related risks 101021866
European Commission