File uploads: We have fixed an issue which caused file uploads to fail. We apologise for the inconvenience it may have caused.

Published December 5, 2022 | Version v1
Conference paper Open

Gated-ViGAT: Efficient Bottom-Up Event Recognition and Explanation Using a New Frame Selection Policy and Gating Mechanism

Description

In this paper, Gated-ViGAT, an efficient approach for video event recognition, utilizing bottom-up (object) information, a new frame sampling policy and a gating mechanism is proposed. Specifically, the frame sampling policy uses weighted in-degrees (WiDs), derived from the adjacency matrices of graph attention networks (GATs), and a dissimilarity measure to select the most salient and at the same time diverse frames representing the event in the video. Additionally, the proposed gating mechanism fetches the selected frames sequentially, and commits early-exiting when an adequately confident decision is achieved. In this way, only a few frames are processed by the computationally expensive branch of our network that is responsible for the bottom-up information extraction. The experimental evaluation on two large, publicly available video datasets (MiniKinetics, ActivityNet) demonstrates that Gated-ViGAT provides a large computational complexity reduction in comparison to our previous approach (ViGAT), while maintaining the excellent event recognition and explainability performance. Source code is made publicly available at: https://github.com/bmezaris/Gated-ViGAT

Files

ism2022b_preprint.pdf

Files (1.6 MB)

Name Size Download all
md5:d589d7f10b9cf2b2345f09d7b4a931b6
1.6 MB Preview Download

Additional details

Funding

CRiTERIA – Comprehensive data-driven Risk and Threat Assessment Methods for the Early and Reliable Identification, Validation and Analysis of migration-related risks 101021866
European Commission