Published March 4, 2021 | Version v1
Journal article Open

Joint Modelling of Wave Energy Flux and Wave Direction

  • 1. Institute of Oceanography, Hellenic Centre for Marine Research
  • 2. Cyprus Marine and Maritime Institute

Description

In the context of wave resource assessment, the description of wave climate is usually confined to significant wave height and  energy period. However, the accurate joint description of both linear and directional wave energy characteristics is essential for the proper and detailed optimization of wave energy converters. In this work, the joint probabilistic description of wave energy flux and wave direction is performed and evaluated. Parametric univariate models are implemented for the description of wave energy flux and wave direction. For wave energy flux, conventional, and mixture distributions are examined while for wave direction proven and efficient finite mixtures of von Mises distributions are used. The bivariate modelling is based on the implementation of the Johnson–Wehrly model. The examined models are applied on long-term measured wave data at three offshore locations in Greece and hindcast numerical wave model data at three locations in the western Mediterranean, the North Sea, and the North Atlantic Ocean. A global criterion that combines five individual goodness-of-fit criteria into a single expression is used to evaluate the performance of bivariate models. From the optimum bivariate model, the expected wave energy flux as function of wave direction and the distribution of wave energy flux for the mean and most probable wave directions are also obtained.

Files

processes-09-00460-v2.pdf

Files (5.4 MB)

Name Size Download all
md5:9058cfe80d6cf0f1dd0881df15108ea2
5.4 MB Preview Download

Additional details

Funding

CMMI – MaRITeC-X – Marine and Maritime Research, Innovation, Technology Centre of Excellence 857586
European Commission

References

  • Soukissian, T.H.; Denaxa, D.; Karathanasi, F.; Prospathopoulos, A.; Sarantakos, K.; Iona, A.; Georgantas, K.; Mavrakos, S. Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives. Energies 2017, 10, 1512.
  • Garcia, P.Q.; Sanabria, J.G.; Ruiz, J.A.C. The role of maritime spatial planning on the advance of blue energy in the European Union. Mar. Policy 2019, 99, 123–131.
  • Besio, G.; Mentaschi, L.; Mazzino, A. Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast. Energy 2016, 94, 50–63.
  • Arena, F.; LaFace, V.; Malara, G.; Romolo, A.; Viviano, A.; Fiamma, V.; Sannino, G.; Carillo, A. Wave climate analysis for the design of wave energy harvesters in the Mediterranean Sea. Renew. Energy 2015, 77, 125–141.
  • Lavidas, G. Selection index for Wave Energy Deployments (SIWED): A near-deterministic index for wave energy converters. Energy 2020, 196, 117131.
  • Guillou, N.; Chapalain, G. Annual and seasonal variabilities in the performances of wave energy converters. Energy 2018, 165, 812–823.
  • Fairley, I.; Smith, H.C.M.; Robertson, B.; Abusara, M.; Masters, I. Spatio-temporal variation in wave power and implications for electricity supply. Renew. Energy 2017, 114, 154–165.
  • Hiles, C.E.; Beatty, S.J.; De Andres, A. Wave energy converter annual energy production uncertainty using simulations. J. Mar. Sci. Eng. 2016, 4, 53.
  • Stopa, J.E.; Filipot, J.-F.; Li, N.; Cheung, K.F.; Chen, Y.-L.; Vega, L. Wave energy resources along the Hawaiian Island chain. Renew. Energy 2013, 55, 305–321.
  • Allahdadi, M.N.; He, R.; Neary, V.S. Predicting ocean waves along the US east coast during energetic winter storms: Sensitivity to whitecapping parameterizations. Ocean Sci. 2019, 15, 691–715.
  • O'Connell, R.; de Montera, L.; Peters, J.L.; Horion, S. An updated assessment of Ireland's wave energy resource using satellite data assimilation and a revised wave period ratio. Renew. Energy 2020, 160, 1431–1444.
  • Ahn, S.; Haas, K.A.; Neary, V.S. Wave energy resource characterization and assessment for coastal waters of the United States. Appl. Energy 2020, 267, 114922.
  • Wan, Y.; Zhang, J.; Meng, J.; Wang, J.; Dai, Y. Study on wave energy resource assessing method based on altimeter data—A case study in Northwest Pacific. Acta Oceanol. Sin. 2016, 35, 117–129.
  • Sánchez, A.S.; Rodrigues, D.A.; Fontes, R.M.; Martins, M.F.; Kalid, R.D.A.; Torres, E.A. Wave resource characterization through in-situ measurement followed by artificial neural networks' modeling. Renew. Energy 2018, 115, 1055–1066.
  • Hanson, J.L.; Jensen, R.E. Wave system diagnostics for numerical wave models. In Proceedings of the 8th International Workshop on Wave Hindcasting and Forecasting, Oahu, HI, USA, 14–19 November 2004; pp. 231–238.
  • Allahdadi, M.N.; Gunawan, B.; Lai, J.; He, R.; Neary, V.S. Development and validation of a regional-scale high-resolution unstructured model for wave energy resource characterization along the US East Coast. Renew. Energy 2019, 136, 500–511.
  • Christakos, K.; Varlas, G.; Cheliotis, I.; Spyrou, C.; Aarnes, O.J.; Furevik, B.R. Characterization of wind-sea- and swell-induced wave energy along the Norwegian coast. Atmosphere 2020, 11, 166.
  • Guillou, N. Estimating wave energy flux from significant wave height and peak period. Renew. Energy 2020, 155, 1383–1393.
  • Liberti, L.; Carillo, A.; Sannino, G. Wave energy resource assessment in the Mediterranean, the Italian perspective. Renew. Energy 2013, 50, 938–949.
  • Neary, V.S.; Ahn, S.; Seng, B.E.; Allahdadi, M.N.; Wang, T.; Yang, Z.; He, R. Characterization of extreme wave conditions for wave energy converter design and project risk assessment. J. Mar. Sci. Eng. 2020, 8, 289
  • Allahdadi, M.N.C.; Allahyar, N.; McGee, M.R.L. Wave spectral patterns during a historical cyclone: A numerical model for cyclone gonu in the Northern Oman Sea. Open J. Fluid Dynam. 2017, 7, 131–151.
  • Cuttler, M.V.; Hansen, J.E.; Lowe, R.J. Seasonal and interannual variability of the wave climate at a wave energy hotspot off the southwestern coast of Australia. Renew. Energy 2020, 146, 2337–2350.
  • Wu, W.-C.; Wang, T.; Yang, Z.; García-Medina, G. Development and validation of a high-resolution regional wave hindcast model for U.S. West Coast wave resource characterization. Renew. Energy 2020, 152, 736–753.
  • Ulazia, A.; Penalba, M.; Ibarra-Berastegui, G.; Ringwood, J.; Saénz, J. Wave energy trends over the Bay of Biscay and the consequences for wave energy converters. Energy 2017, 141, 624–634.
  • Silverman, B.W. Density Estimation for Statistics and Data Analysis; Taylor & Francis: London, UK, 1986
  • Scott, D.W. Multivariate Density Estimation: Theory, Practice, and Visualization; Wiley: New York, NY, USA, 1992.
  • Vanem, E. Joint statistical models for significant wave height and wave period in a changing climate. Mar. Struct. 2016, 49, 180–205.
  • Bitner-Gregersen, E.M. Joint met-ocean description for design and operations of marine structures. Appl. Ocean Res. 2015, 51, 279–292.
  • Li, W.; Isberg, J.; Chen, W.; Engström, J.; Waters, R.; Svensson, O. Bivariate joint distribution modeling of wave climate data using a copula method. Int. J. Energy Statist. 2016, 4, 1650015.
  • Athanassoulis, G.; Belibassakis, K. Probabilistic description of metocean parameters by means of kernel density models 1. Theoretical background and first results. Appl. Ocean Res. 2002, 24, 1–20.
  • Ferreira, J.; Soares, C.G. Modelling bivariate distributions of significant wave height and mean wave period. Appl. Ocean Res. 2002, 24, 31–45.
  • Lucas, C.; Soares, C.G. Bivariate distributions of significant wave height and mean wave period of combined sea states. Ocean Eng. 2015, 106, 341–353.
  • Myrhaug, D.; Leira, B.J.; Holm, H. Wave power statistics for individual waves. Appl. Ocean Res. 2009, 31, 246–250.
  • Myrhaug, D.; Leira, B.J.; Holm, H. Wave power statistics for sea states. J. Offshore Mech. Arct. Eng. 2011, 133, 044501.
  • López, I.; Andreu, J.; Ceballos, S.; Martínez de Alegría, I.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev. 2013, 27, 413–434.
  • Pitt, E. Assessment of Performance of Wave Energy Conversion Systems; European Marine Energy Centre Ltd.: London, UK, 2009.
  • LaFace, V.; Arena, F.; Soares, C.G. Directional analysis of sea storms. Ocean Eng. 2015, 107, 45–53.
  • Carballo, R.; E Sanchez, M.; Ramos, V.; Taveirapinto, F.; Iglesias, G. A high resolution geospatial database for wave energy exploitation. Energy 2014, 68, 572–583.
  • Iglesias, G.; Carballo, R. Wave energy and nearshore hot spots: The case of the SE Bay of Biscay. Renew. Energy 2010, 35, 2490–2500.
  • Soukissian, T.H. Probabilistic modeling of directional and linear characteristics of wind and sea states. Ocean Eng. 2014, 91, 91–110.
  • Smith, H.C.M.; Fairley, I.; Robertson, B.; Abusara, M.; Masters, I. Wave resource variability: Impacts on wave power supply over regional to international scales. Energy Procedia 2017, 125, 240–249.
  • Amrutha, M.M.; Kumar, V.S. Spatial and temporal variations of wave energy in the nearshore waters of the central west coast of India. Ann. Geophys. 2016, 34, 1197–1208.
  • Wei, K.; Arwade, S.R.; Myers, A.T.; Valamanesh, V.; Pang, W. Effect of wind and wave directionality on the structural performance of non-operational offshore wind turbines supported by jackets during hurricanes. Wind. Energy 2016, 20, 289–303.
  • Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine; National Renewable Energy Lab (NREL): Golden, CO, USA, 2014.
  • Motions and tower load effects. J. Offshore Mech. Arct. Eng. 2014, 136, 041902.
  • Lisboa, R.C.; Teixeira, P.R.; Fortes, C.J. Numerical evaluation of wave energy potential in the south of Brazil. Energy 2017, 121, 176–184.
  • Soukissian, T.H.; Karathanasi, F.E. On the selection of bivariate parametric models for wind data. Appl. Energy 2017, 188, 280–304.
  • Vega, J.L.; Rodríguez, G. Modelling mean wave direction distribution with the Von Mises model. WIT Trans. Ecol Environ. 2009, 126, 3–14.
  • Tofallis, C. Selecting the best statistical distribution using multiple criteria. Comput. Ind. Eng. 2008, 54, 690–694.
  • Erdem, E.; Shi, J. Comparison of bivariate distribution construction approaches for analysing wind speed and direction data. Wind. Energy 2011, 14, 27–41.
  • Soukissian, T.; Chronis, G. Poseidon: A marine environmental monitoring, forecasting and information system for the Greek seas. Mediterr. Mar. Sci. 2000, 1, 71.
  • Soukissian, T.H.; Chronis, G.T.; Nittis, K.; Diamanti, C. Advancement of operational oceanography in Greece: The case of the Poseidon system. J. Atmospheric Ocean Sci. 2002, 8, 93–107
  • Korres, G.; Ravdas, M.; Zacharioudaki, A. Mediterranean Sea Waves Hindcast (CMEMS MED-Waves 2006–2017) (Version 1) [Data Set]. Copernicus Monitoring Environment Marine Service (CMEMS). Available online: https://doi.org/10.25423/CMCC/MEDSEA_HINDCAST_WAV_006_0122019 (accessed on 15 December 2020).
  • Poli, P.; Hersbach, H.; Dee, D.P.; Berrisford, P.; Simmons, A.J.; Vitart, F.; Laloyaux, P.; Tan, D.G.H.; Peubey, C.; Thépaut, J.-N.; et al. ERA-20C: An atmospheric reanalysis of the twentieth century. J. Clim. 2016, 29, 4083–4097.
  • Romolo, A.; Arena, F. On Adler space-time extremes during ocean storms. J. Geophys. Res. Oceans 2015, 120, 3022–3042.
  • Romolo, A.; Malara, G.; Laface, V.; Arena, F. Space–time long-term statistics of ocean storms. Probabilist. Eng. Mech. 2016, 44, 150–162.
  • Fedele, F.; Lugni, C.; Chawla, A. The sinking of the El Faro: Predicting real world rogue waves during Hurricane Joaquin. Sci. Rep. 2017, 7, 11188.
  • Fisher, N.I. Statistical Analysis of Circular Data, 1st ed.; Cambridge University Press: Cambridge, UK, 1993.
  • Galanis, G.; Chu, P.C.; Kallos, G.; Kuo, Y.-H.; Dodson, C.T.J. Wave height characteristics in the north Atlantic ocean: A new approach based on statistical and geometrical techniques. Stoch. Environ. Res. Risk Assess. 2011, 26, 83–103.
  • Teixeira, R.; Nogal, M.; O'Connor, A. On the suitability of the generalized Pareto to model extreme waves. J. Hydraul. Res. 2018, 56, 755–770.
  • Masseran, N.; Razali, A.M.; Ibrahim, K.; Latif, M.T. Fitting a mixture of von Mises distributions in order to model data on wind direction in Peninsular Malaysia. Energy Convers. Manag. 2013, 72, 94–102.
  • Directional: A Collection of R Functions for Directional Data Analysis. Available online: https://cran.r-project.org/web/packages/Directional (accessed on 16 December 2020).
  • movMF: Mixtures of von Mises-Fisher Distributions. Available online: https://cran.r-project.org/web/packages/movMF (accessed on 18 December 2020).
  • Dong, S.; Wang, N.; Lu, H.; Tang, L. Bivariate distributions of group height and length for ocean waves using Copula methods. Coast. Eng. 2015, 96, 49–61.
  • Antão, E.; Soares, C.G. Approximation of bivariate probability density of individual wave steepness and height with copulas. Coast. Eng. 2014, 89, 45–52.
  • Qu, X.; Shi, J. Bivariate modeling of wind speed and air density distribution for long-term wind energy estimation. Int. J. Green Energy 2010, 7, 21–37.
  • Athanassoulis, G.A.; Skarsoulis, E.K.; Belibassakis, K.A. Bivariate distributions with given maringals with an application to wave climate description. Appl. Ocean Res. 1994, 16, 1–17.
  • Johnson, R.A.; Wehrly, T.E. Some angular-linear distributions and related regression models. J. Am. Stat. Assoc. 1978, 73, 602.
  • Zhou, J.; Erdem, E.; Li, G.; Shi, J. Comprehensive evaluation of wind speed distribution models: A case study for North Dakota sites. Energy Convers. Manag. 2010, 51, 1449–1458.
  • Kollu, R.; Rayapudi, S.R.; Narasimham, S.; Pakkurthi, K.M. Mixture probability distribution functions to model wind speed distributions. Int. J. Energy Environ. Eng. 2012, 3, 27.
  • Soukissian, T. Use of multi-parameter distributions for offshore wind speed modeling: The Johnson S-B distribution. Appl. Energy 2013, 111, 982–1000.
  • Ouarda, T.; Charron, C.; Shin, J.-Y.; Marpu, P.; Al-Mandoos, A.; Al-Tamimi, M.; Ghedira, H.; Al Hosary, T. Probability distributions of wind speed in the UAE. Energy Convers. Manag. 2015, 93, 414–434.
  • Ramanathan, R. Selecting the best statistical distribution—A comment and a suggestion on multi-criterion evaluation. Comput. Ind. Eng. 2005, 49, 625–628.
  • Wang, Y.; Yam, R.C.; Zuo, M.J. A multi-criterion evaluation approach to selection of the best statistical distribution. Comput. Ind. Eng. 2004, 47, 165–180.