Published June 30, 2023 | Version v1
Journal article Open

Biodiversity data supports research on human infectious diseases: Global trends, challenges, and opportunities

  • 1. Facultad de Ciencias, Universidad Mayor, Chile
  • 2. Biodiversity Informatics, Meise Botanic Garden, Belgium Nieuwelaan 38, 1860, Meise, Belgium
  • 3. Instituto Ren´e Rachou, Fundaç˜ao Oswaldo Cruz, Brazil Av. Augusto de Lima, 1715 - Barro Preto, Belo Horizonte, MG 30190-002, Brazil
  • 4. HSM, University Montpellier, CNRS, IRD, 911 Av. Agropolis, 34394 Montpellier, France
  • 5. Global Biodiversity Information Facility, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
  • 6. Smithsonian Institution, National Museum of Natural History, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
  • 7. University of Oxford, Oxford OX1 2JD, United Kingdom

Description

Astorga, Francisca, Groom, Quentin, Shimabukuro, Paloma Helena Fernandes, Manguin, Sylvie, Noesgaard, Daniel, Orrell, Thomas, Sinka, Marianne, Hirsch, Tim, Schigel, Dmitry (2023): Biodiversity data supports research on human infectious diseases: Global trends, challenges, and opportunities. One Health (100484) 16: 1-9, DOI: 10.1016/j.onehlt.2023.100484, URL: http://dx.doi.org/10.1016/j.onehlt.2023.100484

Files

source.pdf

Files (1.4 MB)

Name Size Download all
md5:8b4532e49ba0037ab4c8f90e48ce5ed7
1.4 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:8B45FFE4FFA0037AFFC8F90EFFCEFFD7

References

  • [1] J.M. Heberling, J.T. Miller, D. Noesgaard, S.B. Weingart, D. Schigel, Data integration enables global biodiversity synthesis, Proc. Natl. Acad. Sci. U. S. A. 118 (2021), e2018093118, https://doi.org/10.1073/pnas.2018093118.
  • [2] J.-F. Doherty, X. Chai, L.E. Cope, D. de Angeli Dutra, M. Milotic, S. Ni, E. Park, A. Filion, The rise of big data in disease ecology, Trends Parasitol. 37 (2021) 1034-1037, https://doi.org/10.1016/j.pt.2021.09.003.
  • [3] ENETWILD consortium, F, G. Body Jaroszynska, S. Pamerlon, A. Archambeau, Applying the Darwin Core data standard to wildlife disease - advancements toward a new data model, EFS3. 19 (2022), https://doi.org/10.2903/sp.efsa.2022.EN- 7667.
  • [4] J.M. Zaspel, J.M. Allen, C.D. Tyrrell, N. Lemoine, L.M. Jacobus, C. Klem, J. Goodwin, J.M. Bates, Human health, interagency coordination, and the need for biodiversity data, BioScience. 70 (2020) 527, https://doi.org/10.1093/biosci/ biaa065.
  • [5] SciColl, Scientific Collections and Emerging Infectious Diseases: Report of an Interdisciplinary Workshop, Scientific Collections International, Washington, D.C., 2015.
  • [6] A.W. Bartlow, C. Machalaba, W.B. Karesh, J.M. Fair, Biodiversity and global health: intersection of health, security, and the environment, Health Secur. 19 (2021) 214-222, https://doi.org/10.1089/hs.2020.0112.
  • [7] C.K. Glidden, N. Nova, M.P. Kain, K.M. Lagerstrom, E.B. Skinner, L. Mandle, S. H. Sokolow, R.K. Plowright, R. Dirzo, G.A. De Leo, E.A. Mordecai, Humanmediated impacts on biodiversity and the consequences for zoonotic disease spillover, Curr. Biol. 31 (2021) 1342-1361, https://doi.org/10.1016/j. cub.2021.08.070.
  • [8] FAO, Taking a Multisectoral One Health Approach: A Tripartite Guide to Addressing Zoonotic Diseases in Countries, FAO/OIE/WHO, Rome, Italy, 2019.
  • [9] A.D. Chapman, Principles of Data Quality, Version 1.0, Report for the Global Biodiversity Information Facility, Copenhagen, 2005.
  • [10] G.B.I.F. Secretariat, Introduction to GBIF, Version 981bc3d, Global Biodiversity Information Facility, Copenhagen, 2021.
  • [11] G. Nelson, S. Ellis, The history and impact of digitization and digital data mobilization on biodiversity research, Philos. Trans. R. Soc. B 374 (2019) 20170391, https://doi.org/10.1098/rstb.2017.0391.
  • [12] DRYAD, Dryad Digital Repository. https://datadryad.org/stash, 2022.
  • [13] European Organization For Nuclear Research, OpenAIRE, Zenodo (2013), https:// doi.org/10.25495/7GXK-RD71.
  • [14] W. Hugo, D. Hobern, U. Ktoljalg, ´E.´O. Tuama, H. Saarenmaa, Global infrastructures for biodiversity data and services, in: M. Walters, R.J. Scholes (Eds.), The GEO Handbook on Biodiversity Observation Networks, Springer International Publishing, Cham, 2017, pp. 259-291, https://doi.org/10.1007/978-3-319-27288- 7_11.
  • [15] M.D. Wilkinson, M. Dumontier, J. Ij, G. Aalbersberg, M. Appleton, A. Axton, N. Baak, J.-W. Blomberg, L.B. Boiten, P.E. Silva Santos, J. Bourne, A.J. Bouwman, T. Brookes, M. Clark, I. Crosas, O. Dillo, S. Dumon, C.T. Edmunds, R. Evelo, A. Finkers, A.J.G. Gonzalez-Beltran, P. Gray, C. Groth, J.S. Goble, J. Grethe, P.A. C. Heringa, R. Hooft Hoen, T. Kuhn, R. Kok, J. Kok, S.J. Lusher, M.E. Martone, A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.- A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M.A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, B. Mons, The FAIR guiding principles for scientific data management and stewardship, Sci. Data 3 (2016), 160018, https:// doi.org/10.1038/sdata.2016.18.
  • [16] A.D. Chapman, L. Belbin, P. Zermoglio, J. Wieczorek, P. Morris, M. Nicholls, E. R. Rees, A. Veiga, A. Thompson, A. Saraiva, S. James, C. Gendreau, A. Benson, D. Schigel, Developing standards for improved data quality and for selecting fit for use biodiversity data, BISS 4 (2020), e50889, https://doi.org/10.3897/ biss.4.50889.
  • [17] TDWG, Darwin Core Quick Reference Guide, Darwin Core Standards. https://dwc. tdwg.org/terms/#dwc:associatedOccurrences, 2021.
  • [18] OECD, Final Report of the OECD Megascience Forum, Organization for Economic Cooperation and Development, 1999.
  • [19] B.R. Stein, J.R. Wieczorek, Mammals of the world: MaNIS as an example of data integration in a distributed network environment, Biodivers. Inform. 1 (2004), https://doi.org/10.17161/bi.v1i0.7.
  • [20] D.R. Brooks, E.P. Hoberg, W.A. Boeger, S.L. Gardner, S.B.L. Araujo, K. Bajer, S. Botero-Catnola, B.D. Byrd, G. F¨oldv´ari, J.A. Cook, J.L. Dunnum, A. T. Dursahinhan, L.Z. Garamszegi, D. Herczeg, F. Jakab, A. Juarrero, G. Kemenesi, K. Kurucz, V. Le´on-R `egagnon, H.H. Mejia-Madrid, O. Moln´ar, R.A. Nisbett, W. Preiser, M. Stuart, E. Szathm´ary, V. Trivellone, Before the pandemic ends: making sure this never happens again, World Complex. Sci. Acad. J. 1 (2020) 1-10.
  • [21] J.A. Cook, S. Arai, B. Armi´en, J. Bates, C.A.C. Bonilla, M.B.S. Cortez, J.L. Dunnum, A.W. Ferguson, K.M. Johnson, F.A.A. Khan, D.L. Paul, D.M. Reeder, M.A. Revelez, N.B. Simmons, B.M. Thiers, C.W. Thompson, N.S. Upham, M.P.M. Vanhove, P. W. Webala, M. Weksler, R. Yanagihara, P.S. Soltis, Integrating biodiversity infrastructure into pathogen discovery and mitigation of emerging infectious diseases, BioScience. 70 (2020) 531-534, https://doi.org/10.1093/biosci/ biaa064.
  • [22] J.L. Dunnum, R. Yanagihara, K.M. Johnson, B. Armien, N. Batsaikhan, L. Morgan, J.A. Cook, Biospecimen repositories and integrated databases as critical infrastructure for pathogen discovery and pathobiology research, PLoS Negl. Trop. Dis. 11 (2017), e0005133, https://doi.org/10.1371/journal.pntd.0005133.
  • [23] A. Peterson, Ecologic niche modeling and spatial patterns of disease transmission, Emerg. Infect. Dis. 12 (2006) 1822-1826, https://doi.org/10.3201/ eid1212.060373.
  • [24] B.V. Purse, N. Golding, Tracking the distribution and impacts of diseases with biological records and distribution modelling, Biol. J. Linn. Soc. Lond. 115 (2015) 664-677, https://doi.org/10.1111/bij.12567.
  • [25] H. Pearson, "Virophage" suggests viruses are alive, Nature. 454 (2008) 677, https://doi.org/10.1038/454677a.
  • [26] E.E. Johnson, L.E. Escobar, C. Zambrana-Torrelio, An ecological framework for modeling the geography of disease transmission, Trends Ecol. Evol. 34 (2019) 655-668, https://doi.org/10.1016/j.tree.2019.03.004.
  • [27] M. Aria, C. Cuccurullo, Bibliometrix: an R-tool for comprehensive science mapping analysis, J. Inform. 11 (2017) 959-975, https://doi.org/10.1016/j. joi.2017.08.007.
  • [28] B.A. Jones, D. Grace, R. Kock, S. Alonso, J. Rushton, M.Y. Said, D. McKeever, F. Mutua, J. Young, J. McDermott, D.U. Pfeiffer, Zoonosis emergence linked to agricultural intensification and environmental change, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 8399-8404, https://doi.org/10.1073/pnas.1208059110.
  • [29] L.H. Taylor, S.M. Latham, M.E.J. Woolhouse, Risk factors for human disease emergence, Philos. Trans. R. Soc. Lond. B 356 (2001) 983-989, https://doi.org/ 10.1098/rstb.2001.0888.
  • [30] J.-F. Doherty, X. Chai, L.E. Cope, D. de Angeli Dutra, M. Milotic, S. Ni, E. Park, A. Filion, The rise of big data in disease ecology, Trends Parasitol. 37 (2021) 1034-1037, https://doi.org/10.1016/j.pt.2021.09.003.
  • [31] WHO, Vector-borne diseases, World Health Organization, 2020. https://www.who. int/news-room/fact-sheets/detail/vector-borne-diseases.
  • [32] Z.L. Grange, T. Goldstein, C.K. Johnson, S. Anthony, K. Gilardi, P. Daszak, K. J. Olival, T. O' Rourke, S. Murray, S.H. Olson, E. Togami, G. Vidal, Expert Panel, PREDICT Consortium, J.A.K. Mazet, Ranking the risk of animal-to-human spillover for newly discovered viruses, Proc. Natl. Acad. Sci. U. S. A. 118 (2021), e2002324118, https://doi.org/10.1073/pnas.2002324118.
  • [33] J. Troudet, P. Grandcolas, A. Blin, R. Vignes-Lebbe, F. Legendre, Taxonomic bias in biodiversity data and societal preferences, Sci. Rep. 7 (2017) 9132, https://doi. org/10.1038/s41598-017-09084-6.
  • [34] M.J. Troia, R.A. McManamay, Filling in the GAPS: evaluating completeness and coverage of open-access biodiversity databases in the United States, Ecol. Evol. 6 (2016) 4654-4669, https://doi.org/10.1002/ece3.2225.
  • [35] C.J. Carlson, K.R. Burgio, E.R. Dougherty, A.J. Phillips, V.M. Bueno, C.F. Clements, G. Castaldo, T.A. Dallas, C.A. Cizauskas, G.S. Cumming, J. Dotna, N.C. Harris, R. Jovani, S. Mironov, O.C. Muellerklein, H.C. Proctor, W.M. Getz, Parasite biodiversity faces extinction and redistribution in a changing climate, Sci. Adv. 3 (2017), e1602422, https://doi.org/10.1126/sciadv.1602422.
  • [36] D. Velasco, M. Garcia-Llorente, B. Alonso, A. Dolera, I. Palomo, I. Iniesta-Arandia, B. Martin-L´opez, Biodiversity conservation research challenges in the 21st century: a review of publishing trends in 2000 and 2011, Environ. Sci. Pol. 54 (2015) 90-96, https://doi.org/10.1016/j.envsci.2015.06.008.
  • [37] R. Dirzo, P.H. Raven, Global state of biodiversity and loss, Annu. Rev. Environ. Resour. 28 (2003) 137-167, https://doi.org/10.1146/annurev. energy.28.050302.105532.
  • [38] N. Upham, D. Agosti, J. Poelen, L. Penev, D. Paul, D. Reeder, N.B. Simmons, G. Csorba, Q. Groom, M. Dimitrova, J. Miller, Liberating biodiversity data from COVID-19 lockdown: toward a knowledge hub for mammal host-virus information, BISS. 4 (2020), e59199, https://doi.org/10.3897/biss.4.59199.
  • [39] A. Estrada-Petna, A. Adkin, S. Bertolini, C. Cook, M.I. Crescio, V. Grosbois, V. Horigan, S. Ip, A. Leger, G. Mastrantonio, C. Maurella, M. de Nardi, G. Ru, R. Simons, E. Snary, K. Staerk, R. Taylor, G.C. Smith, Evaluating a mixed abiotic-biotic model for the distribution and host contact rates of an arthropod vector of pathogens: an example with Ixodes ricinus (Ixodidae), Microbial Risk Anal. 13 (2019), 100067, https://doi.org/10.1016/j.mran.2018.12.001.
  • [40] UNM, Museums and Emerging Pathogens ECHO Program, University of New Mexico, 2022. Health Sciences, https://hsc.unm.edu/echo/partner-portal/progr ams/global/mepa/.
  • [41] D.W. Redding, S. Tiedt, G. Lo Iacono, B. Bett, K.E. Jones, Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa, Philos. Trans. R. Soc. B 372 (2017) 20160165, https://doi.org/10.1098/rstb.2016.0165.
  • [42] A. Tull, H. Valdmann, E. Tammeleht, T. Kaasiku, R. Rannap, U. Saarma, High overlap of zoonotic helminths between wild mammalian predators and rural dogs - an emerging one health concern? Parasitology. 149 (2022) 1565-1574, https:// doi.org/10.1017/S0031182022001032.
  • [43] E. Arnaud, N.P. Castatneda-´Alvarez, J.G. Cossi, D. Endresen, E. Jahanshiri, Y. Vigouroux, D. Schigel, Final Report of the Task Group on GBIF Data Fitness for Use in Agrobiodiversity, 2016.
  • [44] Q. Groom, T. Adriaens, S. Bertolino, K. Phelps, J. Poelen, D. Reeder, D. Richardson, N. Simmons, N. Upham, Holistic understanding of contemporary ecosystems requires integration of data on domesticated, captive and cultivated organisms, BDJ. 9 (2021), e65371, https://doi.org/10.3897/BDJ.9.e65371.
  • [45] P.D. Edwin Scholes III, Macaulay Library Audio and Video Collection, 2017, https://doi.org/10.15468/CKCDPY.
  • [46] O.N. Reznik, D.O. Kuzmin, A.O. Reznik, Biobanks as the basis for developing biomedicine: problems and prospects, Mol. Biol. 51 (2017) 666-673, https://doi. org/10.1134/S0026893317050156.
  • [47] N. Enke, A. Thessen, K. Bach, J. Bendix, B. Seeger, B. Gemeinholzer, The user' s view on biodiversity data sharing - investigating facts of acceptance and requirements to realize a sustainable use of research data -, Ecol. Inform. 11 (2012) 25-33, https://doi.org/10.1016/j.ecoinf.2012.03.004.
  • [48] M.H. Oushy, R. Palacios, A.E.C. Holden, A.G. Ramirez, K.J. Gallion, M. A. O' Connell, To share or not to share? A survey of biomedical researchers in the U. S. Southwest, an ethnically diverse region, PLoS One 10 (2015), e0138239, https://doi.org/10.1371/journal.pone.0138239.
  • [49] L. Tedersoo, R. Kungas, E. Oras, K. K¨oster, H. Eenmaa, ¨A. Leijen, M. Pedaste, M. Raju, A. Astapova, H. Lukner, K. Kogermann, T. Sepp, Data sharing practices and data availability upon request differ across scientific disciplines, Sci. Data 8 (2021) 192, https://doi.org/10.1038/s41597-021-00981-0.
  • [50] C. Tenopir, S. Allard, K. Douglass, A.U. Aydinoglu, L. Wu, E. Read, M. Manoff, M. Frame, Data sharing by scientists: practices and perceptions, PLoS One 6 (2011), e21101, https://doi.org/10.1371/journal.pone.0021101.
  • [51] J.M. Wicherts, M. Bakker, D. Molenaar, Willingness to share research data is related to the strength of the evidence and the quality of reporting of statistical results, PLoS One 6 (2011), e26828, https://doi.org/10.1371/journal. pone.0026828.
  • [52] C.W. Thompson, K.L. Phelps, M.W. Allard, J.A. Cook, J.L. Dunnum, A.W. Ferguson, M. Gelang, F.A.A. Khan, D.L. Paul, D.M. Reeder, N.B. Simmons, M.P.M. Vanhove, P.W. Webala, M. Weksler, C.W. Kilpatrick, Preserve a voucher specimen! The critical need for integrating natural history collections in infectious disease studies, MBio 12 (2021), https://doi.org/10.1128/mBio.02698-20 e02698-20.
  • [53] Gobierno de Mexico, Datos Abiertos del Gobierno de Mexico. https://datos.gob. mx/busca/dataset, 2022.
  • [54] ISP, Sistema Interactivo de Resultados de Vigilancia del Instituto de Salud Publica, Chile, https://www.ispch.gob.cl/andid/sistema-interactivo-de-resultados-de-vigi lancia/, 2022.
  • [55] EMPRES-i FAO, EMPRES-i - Global Animal Disease Information System Disease Events from FAO Global Animal Disease Information System, Food and Agriculture Organization of the United Nations, 2022. https://empres-i.apps.fao.org/.
  • [56] GenBank, GenBank: National Library Medicine, International Nucleotide Sequence Database Collaboration. https://www.ncbi.nlm.nih.gov/genbank/, 2022.
  • [57] MaNIS, Mammal Networked Information System Project, 2022.
  • [58] ALA, Atlas of Living Australia. http://www.ala.org.au/, 2022.
  • [59] FairSharing, FairSharing: Tandars, Databases, Policies. https://fairsharing.org/, 2022.
  • [60] BMC, Data Standardization, Sharing and Publication. https://www.biomedcentral. com/collections/datasharing, 2022.
  • [61] I. Hrynaszkiewicz, A call for BMC research notes contributions promoting best practice in data standardization, sharing and publication, BMC Res. Notes 3 (235) (2010), https://doi.org/10.1186/1756-0500-3-235, 1756-0500-3-235.
  • [62] ODI, The Open Data Institute. https://theodi.org/, 2022.
  • [63] OBK, Open Knowledge Foundation, A Fair, Free and Open Future. https://okfn. org/, 2022.
  • [64] M.J. Costello, W.K. Michener, M. Gahegan, Z.-Q. Zhang, P.E. Bourne, Biodiversity data should be published, cited, and peer reviewed, Trends Ecol. Evol. 28 (2013) 454-461, https://doi.org/10.1016/j.tree.2013.05.002.
  • [65] J.P. Colella, J. Bates, S.F. Burneo, M.A. Camacho, C. Carrion Bonilla, I. Constable, G. D' Elia, J.L. Dunnum, S. Greiman, E.P. Hoberg, E. Lessa, S.W. Liphardt, M. Londotno-Gaviria, E. Losos, H.L. Lutz, N. Ordo´tnez Garza, A.T. Peterson, M. L. Martin, C.C. Ribas, B. Struminger, F. Torres-P´erez, C.W. Thompson, M. Weksler, J.A. Cook, Leveraging natural history biorepositories as a global, decentralized, pathogen surveillance network, PLoS Pathog. 17 (2021), e1009583, https://doi. org/10.1371/journal.ppat.1009583.
  • [66] L.M.R. Gadelha, P.C. Siracusa, E.C. Dalcin, L.A.E. Silva, D.A. Augusto, E. Krempser, H.M. Affe, R.L. Costa, M.L. Mondelli, P.M. Meirelles, F. Thompson, M. Chame, A. Ziviani, M.F. Siqueira, A survey of biodiversity informatics: concepts, practices, and challenges, WIREs Data Mining Knowl. Discov. 11 (2021), https://doi.org/ 10.1002/widm.1394.
  • [67] H.A. Piwowar, A method to track dataset reuse in biomedicine: filtered GEO accession numbers in PubMed central: a method to track dataset reuse in biomedicine: filtered GEO accession numbers in PubMed central, Proc. Am. Soc. Info. Sci. Tech. 47 (2010) 1-2, https://doi.org/10.1002/meet.14504701450.
  • [68] T. Dallas, helminthR: an R interface to the London natural history museum' s hostparasite database, Ecography. 39 (2016) 391-393, https://doi.org/10.1111/ ecog.02131.
  • [69] Plazi-Zenodo-GloBI integration, GloBI. https://www.globalbioticinteractions. org/plazi-zenodo/, 2020.
  • [70] ARCTOS, ARCTOS Collaborative Collection Management Solution. https://arcto sdb.org/about/, 2022.
  • [71] D.T. Haydon, S. Cleaveland, H.T. Taylor, M.K. Laurenson, Identifying reservoirs of infection: a conceptual and practical challenge, Emerg. Infect. Dis. 8 (2002) 1468-1473, https://doi.org/10.3201/eid0812.010317.