Published February 3, 2023
| Version v1
Journal article
Open
Earthquake prediction with machine learning models based on peak of radon anomalies
Creators
Description
Earthquake prediction is currently the most important task required for probability, hazard, risk mapping, and mitigation. In the past, various traditional and machine learning models have been used for risk assessment. It is unlikely that anyone will ever be able to predict earthquakes accurately, but with advancements in deep learning algorithms, predictions can become more precise and closer to the actual natural disaster. Different machine learning approaches and deep learning models based on radon anomaly detection have been compared, opening the field for further developments.
Files
Earthquake prediction with machine learning models based on peak of radon anomalies.pdf
Files
(883.2 kB)
Name | Size | Download all |
---|---|---|
md5:9e60c042751b8e833f865336cb012bc6
|
883.2 kB | Preview Download |
Additional details
References
- [1] A. A. Mir et al. 2022. Anomalies Prediction in Radon Time Series for Earthquake Likelihood Using Machine Learning-Based Ensemble Model. IEEE Access, vol. 10, pp. 37984 – 37999. DOI:https://doi.org/10.1109/ACCESS.2022.3163291
- [2] Doğan, A., Demir, E. 2022. Structural recurrent neural network models for earthquake prediction. Neural Comput & Applic 34, 11049–11062. DOI:https://doi.org/10.1007/s00521-022-07030-w
- [3] Chetia, T., Baruah, S., Dey, C. et al. 2022. Seismic induced soil gas radon anomalies observed at multiparametric geophysical observatory, Tezpur (Eastern Himalaya), India: an appraisal of probable model for earthquake forecasting based on peak of radon anomalies. Nat Hazards 111, 3071–3098. DOI:https://doi.org/10.1007/s11069-021-05168-9
- [4] Johnson, P. A., Rouet-Leduc, B., Pyrak-Nolte, L. J., Beroza, G. C., Marone, C. J., Hulbert, C., ... & Reade, W. 2021. Laboratory earthquake forecasting: A machine learning competition. Proceedings of the National Academy of Sciences, 118(5). DOI:https://doi.org/10.1073/pnas.2011362118
- [5] Khan, M. M., Ghaffar, B., Shahzad, R., Khan, M. R., Shah, M., Amin, A. H., ... & Ali, R. 2022. Atmospheric Anomalies Associated with the 2021 M w 7.2 Haiti Earthquake Using Machine Learning from Multiple Satellites. Sustainability, 14(22), 14782. DOI:https://doi.org/10.3390/su142214782
- [6] Pulinets, S. A. 2007. Natural radioactivity, earthquakes, and the ionosphere. Eos, Transactions American Geophysical Union, 88(20), 217-218. DOI:https://doi.org/10.1029/eost2007EO20
- [7] Won, J., Park, J., Park, J. W., & Kim, I. H. 2020. BLESeis: Low-cost IOT sensor for smart earthquake detection and notification. Sensors, 20(10), 2963. DOI:https://doi.org/10.3390/s20102963
- [8] Tareen, A. D. K., Nadeem, M. S. A., Kearfott, K. J., Abbas, K., Khawaja, M. A., & Rafique, M. 2019. Descriptive analysis and earthquake prediction using boxplot interpretation of soil radon time series data. Applied radiation and isotopes, 154, 108861. DOI:https://doi.org/10.1016/j.apradiso.2019.108861
- [9] Keskin, S., Külahcı, F. 2022. ARIMA model simulation for total electron content, earthquake and radon relationship identification. Nat Hazards. DOI:https://doi.org/10.1007/s11069-022-05622-2
- [10] Mir, A.A., Çelebi, F.V., Rafique, M. et al. 2021. Anomaly Classification for Earthquake Prediction in Radon Time Series Data Using Stacking and Automatic Anomaly Indication Function. Pure Appl. Geophys. 178, 1593–1607. DOI:https://doi.org/10.1007/s00024-021-02736-9
- [11] Rafique, M., Tareen, A.D.K., Mir, A.A. et al. 2020. Delegated Regressor, A Robust Approach for Automated Anomaly Detection in the Soil Radon Time Series Data. Sci Rep 10, 3004. DOI:https://doi.org/10.1038/s41598-020-59881-9
- [12] Jena, R., Pradhan, B., Naik, S. P., & Alamri, A. M. 2021. Earthquake risk assessment in NE India using deep learning and geospatial analysis. Geoscience Frontiers, 12(3). DOI:https://doi.org/10.1016/j.gsf.2020.11.007
- [13] Duong, V. H., Ly, H. B., Trinh, D. H., Nguyen, T. S., & Pham, B. T. 2021. Development of Artificial Neural Network for prediction of radon dispersion released from Sinquyen Mine, Vietnam. Environmental Pollution, 282. DOI:https://doi.org/10.1016/j.envpol.2021.116973
- [14] Weiss, J. R., Qiu, Q., Barbot, S., Wright, T. J., Foster, J. H., Saunders, A., ... & Echalar, A. 2019. Illuminating subduction zone rheological properties in the wake of a giant earthquake. Science advances, 5(12), eaax6720. DOI:https://doi.org/10.1126/sciadv.aax6720
- [15] Tareen, A. D. K., Rafique, M., Kearfot, K. J., Basharat, M., & Shafique, B. 2016. Soil gas radon mapping of Muzaffarabad city, Pakistan. Nuclear Technology and Radiation Protection, 31(3), 291-298. DOI:https://doi.org/10.2298/NTRP1603291T
- [16] Earthquake Hazards | U.S. Geological Survey. 2022. Lisa Wald (U.S. Geological Survey) for "The Green Frog News". https://www.usgs.gov/programs/earthquake-hazards/science-earthquakes
- [17] LANL Earthquake Prediction | Kaggle. 2022. Kaggle Home Page. https://www.kaggle.com/competitions/LANL-Earthquake-Prediction
- [18] Global Observatories: GFZ. 2022. GEOFON Home Page. https://geofon.gfz-potsdam.de/
- [19] Erdbebenarchiv — ZAMG. 2022. Erdbebenarchiv Home Page. https://www.zamg.ac.at/cms/de/geophysik/erdbeben/erdbebenarchiv