There is a newer version of the record available.

Published January 31, 2023 | Version v4
Preprint Open

Jupiter revealed as a real (high-power) pulsar: magnetar- & dwarf novae-type prebursting evolution of Jovian global magnetoactivity since 1996

  • 1. Journal of Geophysics

Description

The decade-scale magnetoactivity evolution profile preceding short-burst pulses — observed in magnetar 4U 0142+61, and superhumps (superoutbursts) — in dwarf novae, emerged from mean least-squares spectra of mission-integrated Galileo–Cassini–Juno 1996–2020 annual samplings of Jupiter ⪅8nT global magnetic field. The profile revealed for the first time the pulsar nature of Jupiters by temporally mapping hyperlow-frequency (<1μHz) systematic dynamics of the magnetospheric signature in the solar wind (Rieger-resonance band of 385.8–64.3 nHz, or ~0.3·109–3·109 erg energetic perturbations) used as a proxy of Jovian magnetoactivity expressed in mean least-squares spectral magnitudes as a novel method for measuring relative field dynamics. The magnetoactivity impressed into the solar wind entirely, encompassing the well-known and Solar system-permeating ~154-day Rieger period and its first six harmonics. Statistical fidelity of spectral peaks stayed well within a very high (Φ≫12) range, 107–105, reflecting the signature’s completeness and incessantness. The magnetoactivity upsurge from spectral means that maintained a stunning ~20% field variance (total energy budget) began reformatting the signature around 1999, gradually transforming it into the anomalous state by 2002, as supported by an increased anisotropic splitting of spectral peaks. In contrast, a comparison against 2005–2016 Cassini global samplings revealed a calm Saturnian magnetoactivity at a low ⪅1% field variance except for every ~7.1 yrs., when it is ⪅5% due possibly to orbital–tidal forcing. The discovery of a global pulsation profile of magnetar–novae type in a planet demands beacon-orbiter missions to monitor Jupiter’s magnetoactivity and its disruption capacity, if any, to Solar-system infrastructure.

Notes

HIGHLIGHTS:
• First mission-integrated study of Jovian global magnetoactivity over decadal scales, using all available in situ data
• Computationally confirmed early claims that Jupiter resembles a pulsar by conclusively showing it is a real pulsar
• Discovery also revealed the exact manner in which Jupiters jump between the star and planet states
• The jump is moderated by a gradually varying sinusoidal energy dissipation regime seen in magnetars & dwarf novae
• The regime represents a part of the confirmed pre-outbursting sequence, calling for permanent monitoring missions
• First application of rigorous Gauss-Vaniček Spectral Analysis (GVSA) in global planetary & space physics
• GVSA revolutionizes space physics by rigorously simulating completed orbits & multiple spacecraft from a single spacecraft.

Files

paper_repo4.pdf

Files (2.9 MB)

Name Size Download all
md5:15d6749727a027de6a3ddc9f36f4d610
1.1 MB Preview Download
md5:a4e05afed5f5e29db32c1bea9367197b
1.8 MB Preview Download

Additional details

References

  • Alfvén, H. (1942) Existence of electromagnetic-hydrodynamic waves. Nature 150(3805):405–406. https://doi.org/10.1038%2F150405d0
  • Aulbach, S., Heaman, L.M., Stachel, T. (2018) The Diamondiferous Mantle Root Beneath the Central Slave Craton. Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits. ISBN 9781629496399. https://doi.org/10.5382/SP.20.15
  • Bai T. and Cliver E. W. (1990) A 154 day periodicity in the occurrence rate of proton flares. Astrophys. J. 363:299-309. https://doi.org/10.1086/169342
  • Cane, H.V., Richardson, I.G., von Rosenvinge, T.T. (1998) Interplanetary magnetic field periodicity of ∼153 days. Geophys. Res. Lett. 25(24):4437-4440. https://doi.org/10.1029/1998GL900208
  • Carbonell, M., Ballester, J.L. (1992) The periodic behaviour of solar activity – The near 155-day periodicity in sunspot areas. Astron. Astrophys. 255(1–2):350–362. https://ui.adsabs.harvard.edu/#abs/1992A&A...255..350C
  • Chancia, R.O., Hedman, M.M., Cowley, S.W.H., Provan, G., Ye, S.-Y. (2019) Seasonal structures in Saturn's dusty Roche Division correspond to periodicities of the planet's magnetosphere. Icarus 330:230-255. https://doi.org/10.1016/j.icarus.2019.04.012
  • Chauvin, G., Lagrange, A.–M., Zuckerman, B., Dumas, C., Mouillet, D., Song, I., Beuzit, J.–L., Lowrance, P., Bessell, M.S. (2005) A companion to AB Pic at the planet/brown dwarf boundary. Astron. Astrophys. 438(3):L29–L32. https://doi.org/10.1051/0004-6361:200500111
  • Cho, J.-H., Lee, D.-Y., Noh, S.-J., Kim, H., Choi, C.R., Lee, J., Hwang, J., (2017) Spatial dependence of electromagnetic ion cyclotron waves triggered by solar wind dynamic pressure enhancements. J. Geophys. Res. Space Phys. 122, 5502–5518. https://doi.org/10.1002/2016JA023827
  • Chowdhury, P., Khan, M., Ray, P.C. (2009) Intermediate-term periodicities in sunspot areas during solar cycles 22 and 23. Mon. Not. R. Astron. Soc. 392(1):1159–1180. https://doi.org/10.1111/j.1365-2966.2008.14117.x
  • Craymer, M.R. (1998) The Least Squares Spectrum, Its Inverse Transform and Autocorrelation Function: Theory and Some Applications in Geodesy. Ph.D. Dissertation, University of Toronto, Canada. https://hdl.handle.net/1807/12263
  • Dessler, A.J. (1987) Magnetospheric power from planetary spin (p.71). IEEE international conference on plasma science, 1-3 June, Crystal City, VA USA
  • Dib, R., Kaspi, V.M., Gavriil, F.P. (2007) 10 Years of RXTE monitoring of the anomalous X-ray pulsar 4U 0142+61: long-term variability. Astrophys. J. 666(2):1152-1164. https://doi.org/10.1086/519726
  • Dimitropoulou, M., Moussas, X., Strintzi, D. (2008) Enhanced Rieger type periodicities' detection in X-ray solar flares and statistical validation of Rossby waves' existence. Proc. Int. Astron. Union 4(S257):159–163. https://doi.org/10.1017/S1743921309029226
  • Dougherty, M.K., Kellock, S., Slootweg, A.P., Achilleos, N., Joy, S.P., Mafi, J.N. (2006) Cassini orbiter magnetometer calibrated 1 minute averaged archive v2.0 & v.1.0, CO-E/SW/J/S-MAG-4-SUMM-AVG1MIN-V2.0. NASA Planetary Data System. https://doi.org/10.17189/1519602
  • Dowden, R.L. (1968) A Jupiter Model of Pulsars. Publications of the Astronomical Society of Australia 1(4):159–159. https://doi.org/10.1017/s132335800001122x
  • Duarte, L.D.V., Wicht, J., Gastinec, T. (2018) Physical conditions for Jupiter-like dynamo models. Icarus 299:206–221. https://doi.org/10.1016/j.icarus.2017.07.016
  • Fan, C.Y., Wu, J., Hang, H. (1982) Scaling from Jupiter to pulsars and mass spectrum of pulsars. Astrophys. J. 260(1):353–361. https://ui.adsabs.harvard.edu/abs/1982ApJ...260..353F
  • Fukuhara, M. (2020) Possible nuclear fusion of deuteron in the cores of Earth, Jupiter, Saturn, and brown dwarfs. AIP Advances 10:035126. https://doi.org/10.1063/1.5108922
  • Ge, Y.S., Jian, L.K., Russell, C.T. (2007) Growth phase of Jovian substorms. Geophys. Res. Lett. 34:L23106. https://doi.org/10.1029/2007GL031987
  • Gaulme, P., Schmider, F.-X., Gay, J., Guillot, T., Jacob, C. (2011) Detection of Jovian seismic waves: a new probe of its interior structure. Astron. Astrophys. 531:A104. https://doi.org/10.1051/0004-6361/201116903
  • Gonzalez, M.E., Dib, R., Kaspi, V.M., Woods, P.M., Tam, C.R., Gavriil, F.P. (2010) Long-term X-ray changes in the emission from the anomalous X-ray pulsar 4U 0142+61. Astrophys. J. 716:1345–1355. https://dx.doi.org/10.1088/0004-637X/716/2/1345
  • Grote, E., Busse, F.H. (2000) Hemispherical dynamos generated by convection in rotating spherical shells. Phys. Rev. E 62:4457–4460. https://doi.org/10.1103/PhysRevE.62.4457
  • Kinkhabwala, A. (2013) Maximum Fidelity. Max Planck Institute of Molecular Physiology report. https://doi.org/10.48550/arXiv.1301.5186
  • Kiplinger, A.L., Dennis, B.R., Orwig, L.E. (1984) Detection of a 158 Day Periodicity in the Solar Hard X-Ray Flare Rate. Bull. Amer. Astron. Soc. 16:891. https://ui.adsabs.harvard.edu/#abs/1984BAAS...16..891K
  • Kivelson, M.G., Khurana, K.K., Russell, C.T., Walker, R.J., Joy, S.P., Mafi, J.N. (1997) Galileo orbiter at Jupiter calibrated mag high res v1.0, GO-J-MAG-3-RDR-HIGHRES-V1.0, NASA Planetary Data System. https://doi.org/10.17189/1519667
  • Kuznetsova, Yu.G., Pavlenko, E.P., Sharipova, L.M., Shugarov, S.Yu. (1999) Observations of Typical, Rare and Unique Phenomena in Close Binaries with Extremal Mass Ratio. Odessa Astron. Pub. 12:197–200. https://ui.adsabs.harvard.edu/#abs/1999OAP....12..197K
  • Lou, Y.-Q., Wang, Y.-M., Fan, Z., Wang, S., Wang, J.X. (2003) Periodicities in solar coronal mass ejections. Mon. Not. R. Astron. Soc. 345(3):809–818. https://doi.org/10.1046/j.1365-8711.2003.06993.x
  • Luhman, K.L., Adame, L., D'Alessio, P., Calvet, N., Hartmann, L., Megeath, S.T., Fazio, G.G. (2005) Discovery of a planetary-mass brown dwarf with a circumstellar disk. Astrophys. J. 635(1):L93. https://doi.org/10.1086/498868
  • Manners, H., Masters, A. (2020) The global distribution of ultralow-frequency waves in Jupiter's magnetosphere. J. Geophys. Res. Space Phys. 125:e2020JA028345. https://doi.org/10.1029/2020JA028345
  • Masters, M. (2017) Revealing how the solar wind interacts with Jupiter's magnetosphere. Magnetospheres of the outer planets (MOP), Conference by the Swedish Institute for Space Physics and Royal Institute of Technology, Uppsala Sweden, 12–16 June.
  • Matsushita S. (1967) Solar quiet and lunar daily variation fields. In: Matsushita S. Campbell W.H. (Eds.) Physics of Geomagnetic Phenomena: International Geophysics Series, Vol. 2, p. 301–424. Academic Press Inc., New York. Reprint 2016, Elsevier. ISBN 9781483222523. https://doi.org/10.1016/B978-0-12-480301-5.50013-6
  • Michel, F.C. (1982) Theory of pulsar magnetospheres. Rev. Mod. Phys. 54:1. https://doi.org/10.1103/RevModPhys.54.1
  • Moore, K.M., Yadav, R.K., Kulowski, L., Cao, H., Bloxham, J., Connerney, J.E.P., Kotsiaros, S., Jørgensen, J.L., Merayo, J.M.G., Stevenson, D.J., Bolton, S.J., Levin, S.M. (2018) A complex dynamo inferred from the hemispheric dichotomy of Jupiter's magnetic field. Nature 561:76–78. https://doi.org/10.1038/s41586-018-0468-5
  • Murakami, G., Yoshioka, K., Kimura, T., Yamazaki, A., Tsuchiya, F., Tao, C., Kita, H., Kagitani, M., Kasaba, Y., Yoshikawa, I., Fujimoto, M. (2017) Response of Jupiter's inner magnetosphere to the solar wind derived from 3-years observation by Hisaki. Magnetospheres of the outer planets (MOP), Conference by the Swedish Institute for Space Physics and Royal Institute of Technology, Uppsala Sweden, 12–16 June.
  • von Neumann, J. (1941) Distribution of the Ratio of the Mean Square Successive Difference to the Variance. Ann. Math. Statist. 12(4):367–395. https://doi.org/10.1214/aoms/1177731677
  • Omerbashich, M. (2023a) First total recovery of Sun global Alfven resonance: least-squares spectra of decade-scale dynamics of N-S-separated fast solar wind reveal solar-type stars act as revolving-field magnetoalternators. arXiv:2301.07219, Subject: Solar and Stellar Astrophysics (astro-ph.SR). https://arxiv.org/abs/2301.07219
  • Omerbashich, M. (2023b) Sun resonant forcing of Mars, Moon, and Earth seismicity. arXiv:2301.10800, Subject: Earth and Planetary Astrophysics (astro-ph.EP). https://doi.org/10.48550/arXiv.2301.10800
  • Omerbashich, M. (2023c) Earth as a time crystal: macroscopic nature of a quantum-scale phenomenon from trans-formative moderation of geomagnetic polarity, topography, and climate by precession resonance due to many-body entrainment. arXiv:2301.02578, Subject: Geophysics (physics.geo-ph). https://doi.org/10.48550/arXiv.2301.02578
  • Omerbashich, M. (2021) Non-marine tetrapod extinctions solve extinction periodicity mystery. Hist. Biol. 34(1):188-191. https://doi.org/10.1080/08912963.2021.1907367
  • Omerbashich, M. (2020) Moon body resonance. J. Geophys. 63:30–42. https://n2t.net/ark:/88439/x034508
  • Omerbashich, M. (2009) Method for Measuring Field Dynamics. US Patent #20090192741, US Patent & Trademark Office. https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=2009192741A1
  • Omerbashich, M. (2007) Magnification of mantle resonance as a cause of tectonics. Geodinamica Acta 20:6:369-383. https://doi.org/10.3166/ga.20.369-383
  • Omerbashich, M. (2006) Gauss–Vaníček Spectral Analysis of the Sepkoski Compendium: No New Life Cycles. Comp. Sci. Eng. 8(4):26–30. https://doi.org/10.1109/MCSE.2006.68 (Erratum due to journal error. Comp. Sci. Eng. 9(4):5–6. https://doi.org/10.1109/MCSE.2007.79; full text: https://arxiv.org/abs/math-ph/0608014)
  • Omerbashich, M. (2003) Earth-model Discrimination Method. Ph.D. Dissertation, pp.129. ProQuest, USA. https://doi.org/10.6084/m9.figshare.12847304
  • Pagiatakis, S. (1999) Stochastic significance of peaks in the least-squares spectrum. J. Geod. 73:67-78. https://doi.org/10.1007/s001900050220
  • Pap, J., Tobiska, W.K., Bouwer, S.D. (1990) Periodicities of solar irradiance and solar activity indices, I. Sol. Phys. 129:165–189. https://doi.org/10.1007/BF00154372
  • Pizzocaro, D., Tiengo, A., Mereghetti, S., Turolla, R., Esposito, P., Stella, L., Zane, S., Rea, N., Coti Zelati, F., Israel, G. (2019) Detailed X-ray spectroscopy of the magnetar 1E 2259+586. Astron. Astrophys. 626:A39. https://doi.org/10.1051/0004-6361/201834784
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2007) Numerical Recipes: The Art of Scientific Computing (3rd Ed.). Cambridge University Press, United Kingdom. ISBN 9780521880688
  • Rieger, E., Share, G.H., Forrest, D.J., Kanbach, G., Reppin, C., Chupp, E.L. (1984) A 154-day periodicity in the occurrence of hard solar flares? Nature 312:623–625. https://doi.org/10.1038/312623a0
  • Roussos, E., Krupp, N., Paranicas, C., Kollmann, P., Mitchell, D.G., Krimigis, S.M., Palmaerts, B., Dialynas, K., Jackman, C.M. (2018) Heliospheric conditions at Saturn during Cassini's ring-grazing and proximal orbits. Geophys. Res. Lett. 45:10812–10818. https://doi.org/10.1029/2018GL078093
  • Rubenstein, E.P., Schaefer, B.E. (2000) Are Superflares on Solar Analogues Caused by Extrasolar Planets? Astrophys. J. 529(2):1031. https://doi.org/10.1086/308326
  • Saur, J., Schreiner, A., Mauk, B.H., Clark, G.B., Kollmann, P. (2017) Wave particle interactions in Jupiter's magnetosphere and associated particle acceleration. Magnetospheres of the outer planets (MOP), Conference by the Swedish Institute for Space Physics and Royal Institute of Technology, Uppsala Sweden, 12–16 June.
  • Schaefer, B.E., King, J.R., Deliyannis, C.P. (2000) Superflares on ordinary solar-type stars. Astrophys. J. 529(2):1026. https://doi.org/10.1086/308325
  • Shannon, C.E. (1948) A Mathematical Theory of Communication. Bell System Tech. J. 27:379–423, 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  • Spruit, H.C. (2017) Essential magnetohydrodynamics for astrophysics. An introduction to magnetohydrodynamics in astrophysics. A report by Max Planck Institute for Astrophysics. https://doi.org/10.48550/arXiv.1301.5572
  • Stallard, T.S., Baines, K.H., Melin, H., Bradley, T.J., Moore, L., O'Donoghue, J., Miller, S., Chowdhury, M.N., Badman, S.V., Allison, H.J., Roussos, E. (2019) Local-time averaged maps of H3+ emission, temperature and ion winds. Phil. Trans. R. Soc. A. 3772018040520180405. https://doi.org/10.1098/rsta.2018.0405
  • Steeves, R.R. (1981). A statistical test for significance of peaks in the least squares spectrum. Collected Papers, Geodetic Survey, Department of Energy, Mines and Resources. Surveys and Mapping Branch, Ottawa Canada, pp. 149–166. http://www2.unb.ca/gge/Research/GRL/LSSA/Literature/Steeves1981.pdf
  • Taylor, J., Hamilton, S. (1972) Some tests of the Vaníček Method of spectral analysis. Astrophys. Space Sci. 17:357–367. https://doi.org/10.1007/BF00642907
  • Tsuchiya, F., Yoshioka, K., Kimura, T., Koga, R., Murakami, G., Yamazaki, A., Kagitani, M., Tao, C., Suzuki, F., Hikida, R., Yoshikawa, I., Kasaba, Y., Kita, H., Misawa, H., Sakanoi, T. (2018) Enhancement of the Jovian magnetospheric plasma circulation caused by the change in plasma supply from the satellite Io. J. Geophys. Res. Space Phys. 123:6514– 6532. https://doi.org/10.1029/2018JA025316
  • Vaníček, P. (1969) Approximate Spectral Analysis by Least-Squares Fit. Astrophys. Space Sci. 4(4):387–391. https://doi.org/10.1007/BF00651344
  • Vaníček, P. (1971) Further Development and Properties of the Spectral Analysis by Least-Squares Fit. Astrophys. Space Sci. 12(1):10–33. https://doi.org/10.1007/BF00656134
  • Vogt, M.F., Gyalay, S., Kronberg, E.A., Bunce, E.J., Kurth, W.S., Zieger, B., Tao, C. (2019) Solar Wind Interaction With Jupiter's Magnetosphere: A Statistical Study of Galileo In Situ Data and Modeled Upstream Solar Wind Conditions. J. Geophys. Res. Space Phys. 124(12):10170–10199. https://doi.org/10.1029/2019JA026950
  • Wells, D.E., Vaníček, P., Pagiatakis, S. (1985) Least squares spectral analysis revisited. Department of Geodesy & Geomatics Engineering Technical Report 84, University of New Brunswick, Canada. http://www2.unb.ca/gge/Pubs/TR84.pdf
  • de Wit, J., Lewis, N.K., Knutson, H.A., Fuller, J., Antoci, V., Fulton, B.J., Laughlin, G., Deming, D., Shporer, A., Batygin, K. (2017) Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System. Astrophys. J. Lett. 836(2):L17. https://doi.org/10.3847/2041-8213/836/2/L17
  • Woods, P.M., Kaspi, V.M., Thompson, C., Gavriil, F.P., Marshall, H.L., Chakrabarty, D., Flanagan, K., Heyl, J., Hernquist, L. (2004) Changes in the X-Ray emission from the magnetar candidate 1E 2259+586 during its 2002 outburst. Astrophys. J. 605(1):378-399. https://doi.org/10.1086/382233
  • Wright, A.N., Mann, I.R. (2013) Global MHD eigenmodes of the outer magnetosphere. In Magnetospheric ULF Waves: Synthesis and New Directions. Geophys. Monogr. Ser. 169, pp. 51–72. https://doi.org/10.1029/169GM06
  • Yao, Z., Dunn, W.R., Woodfield, E.E., Clark, G., Mauk, B.H. et al. (2021) Revealing the source of Jupiter's x-ray auroral flares. Sci. Adv. 7:eabf0851. https://doi.org/10.1126/sciadv.abf0851
  • Zhou, W.X., Sornette, D. (2002) Statistical significance of periodicity and log-periodicity with heavy-tailed correlated noise. Int. J. Mod. Phys. 13(2):137-169. https://doi.org/10.1142/S0129183102003024