There is a newer version of the record available.

Published January 31, 2023 | Version 1.0
Dataset Open

Understanding cirrus clouds using explainable machine learning

  • 1. Institute of Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
  • 2. Image Processing Laboratory, Universitat de València, València, Spain

Description

This repository contains the data for the paper:

Authors: Kai Jeggle , David Neubauer , Gustau Camps-Valls and Ulrike Lohmann
Titel: Understanding cirrus clouds using explainable machine learning
Date: 2023

Note that the scripts can be found in the accompanying package (https://github.com/tabularaza27/explaining_cirrus)

Files

Readme.txt

Files (139.1 MB)

Name Size Download all
md5:6a995cf956e185b11d16166a341a2a50
139.1 MB Download
md5:4c254f1269e7f74c433e547d74abce91
5.2 kB Preview Download

Additional details

Funding

European Commission
iMIRACLI - innovative MachIne leaRning to constrain Aerosol-cloud CLimate Impacts (iMIRACLI) 860100