Published January 24, 2023 | Version v1.0
Dataset Open

Doodleverse/Segmentation Zoo/Seg2Map Res-UNet models for FloodNet/10-class segmentation of RGB 768x512 UAV images

  • 1. Marda Science LLC

Description

Doodleverse/Segmentation Zoo/Seg2Map Res-UNet models for FloodNet/10-class segmentation of RGB 768x512 UAV images

These Residual-UNet model data are based on [FloodNet](https://github.com/BinaLab/FloodNet-Challenge-EARTHVISION2021) images and associated labels.

Models have been created using Segmentation Gym* using the following dataset**: https://github.com/BinaLab/FloodNet-Challenge-EARTHVISION2021

Image size used by model: 768 x 512 x 3 pixels

classes:
1. Background
2. Building-flooded
3. Building-non-flooded
4. Road-flooded
5. Road-non-flooded
6. Water
7. Tree
8. Vehicle
9. Pool
10. Grass

File descriptions

For each model, there are 5 files with the same root name:

1. '.json' config file: this is the file that was used by Segmentation Gym* to create the weights file. It contains instructions for how to make the model and the data it used, as well as instructions for how to use the model for prediction. It is a handy wee thing and mastering it means mastering the entire Doodleverse.

2. '.h5' weights file: this is the file that was created by the Segmentation Gym* function `train_model.py`. It contains the trained model's parameter weights. It can called by the Segmentation Gym* function  `seg_images_in_folder.py`. Models may be ensembled.

3. '_modelcard.json' model card file: this is a json file containing fields that collectively describe the model origins, training choices, and dataset that the model is based upon. There is some redundancy between this file and the `config` file (described above) that contains the instructions for the model training and implementation. The model card file is not used by the program but is important metadata so it is important to keep with the other files that collectively make the model and is such is considered part of the model

4. '_model_history.npz' model training history file: this numpy archive file contains numpy arrays describing the training and validation losses and metrics. It is created by the Segmentation Gym function `train_model.py`

5. '.png' model training loss and mean IoU plot: this png file contains plots of training and validation losses and mean IoU scores during model training. A subset of data inside the .npz file. It is created by the Segmentation Gym function `train_model.py`

Additionally, BEST_MODEL.txt contains the name of the model with the best validation loss and mean IoU

images.zip and labels.zip contain the images and labels, respectively, used to train the model

References
*Segmentation Gym: Buscombe, D., & Goldstein, E. B. (2022). A reproducible and reusable pipeline for segmentation of geoscientific imagery. Earth and Space Science, 9, e2022EA002332. https://doi.org/10.1029/2022EA002332 See: https://github.com/Doodleverse/segmentation_gym

** Rahnemoonfar, M., Chowdhury, T., Sarkar, A., Varshney, D., Yari, M. and Murphy, R.R., 2021. Floodnet: A high resolution aerial imagery dataset for post flood scene understanding. IEEE Access, 9, pp.89644-89654.

Files

BEST_MODEL.txt

Files (999.1 MB)

Name Size Download all
md5:64995fd5d61c98a41517c576475e3351
33 Bytes Preview Download
md5:1a2b33e047ffe83f189eb0e438a42f74
108 Bytes Preview Download
md5:d57a3244912d5e36ae49e0641d24ba08
990 Bytes Preview Download
md5:e31aaa427d666b31a5aae060bc876554
991 Bytes Preview Download
md5:5ea0c998789660093d3dd96819a4482e
69.4 MB Download
md5:d62219dfaca077505cc7ecbad2d51b17
3.4 kB Download
md5:4eca63b1d7584ea409a71befcdd6d8eb
2.3 kB Preview Download
md5:533cace98783c1873273f1d08e8f50a5
207.8 kB Preview Download
md5:8108dcb6d3a13bbb3af999d7d60f01d1
991 Bytes Preview Download
md5:3d73e53c3210d52b17c55542aed8f675
69.4 MB Download
md5:a56ea19af59a6b3e06f72a4eab79d71f
3.3 kB Download
md5:8632f7a2ba3c2152163aedf181d8ffe1
2.3 kB Preview Download
md5:7f5de54486bf0b475ab04e3bbf4cd56f
217.0 kB Preview Download
md5:95afe227e871c11decaf4627db5afc93
991 Bytes Preview Download
md5:3191f09d3bddc7684f101eef60d32229
69.4 MB Download
md5:75d0339b84bb039769874ccbefbcd0af
2.9 kB Download
md5:9a75442fc98731c4ab36669fb4c6eae5
2.3 kB Preview Download
md5:1a97529758f190e9e9ceb37d25e8d5f5
226.5 kB Preview Download
md5:eab6b3f3b972ff4a5f2b402a6d318e59
989 Bytes Preview Download
md5:ce2ee9ced81e0ba2003ab441e36dd009
69.4 MB Download
md5:eaab8cb4bc0a27d3069068a2b07d9d33
3.9 kB Download
md5:d29df9d2fc88a78ab1a58c9c48552e5d
2.3 kB Preview Download
md5:1bb3f3c617dff9d9a89ab091f29d1a99
179.7 kB Preview Download
md5:d7dc25318d6f3eef264f14d5fa4ebd99
989 Bytes Preview Download
md5:aba8bc156333a58da38dea316598044b
69.4 MB Download
md5:3b40b695f4aae914eb5e694e1af358e9
3.1 kB Download
md5:28b1b5730e7aeca473911cd4019dd6e8
2.3 kB Preview Download
md5:584939ee8a7a4653a5dc11ba56f356b9
177.8 kB Preview Download
md5:841ca5def21e14f7d763cb86c348ee67
69.4 MB Download
md5:23842ca01cab79533ce15b83d1f8d013
3.1 kB Download
md5:c896056f1a5ce44f2de30ec77dd2fb89
2.3 kB Preview Download
md5:18e2433bb848554c43e246c1a0d1f935
200.0 kB Preview Download
md5:41798731ef2e1534abdcd957b874803e
990 Bytes Preview Download
md5:98a586bd1c021107c2a4b847894ed0c7
69.4 MB Download
md5:8f9dd555595a6a1729132e9a1731888e
3.0 kB Download
md5:fd5e00fdd5738e51f370aaed40b9b960
2.3 kB Preview Download
md5:827b9a00c25e4ba2dca66e978d5d78f4
190.5 kB Preview Download
md5:f4b188bdf97f16672de83fb6d087d318
991 Bytes Preview Download
md5:e674ec8278e7df17adf92b4855c5d526
69.4 MB Download
md5:ad036c220e6e7c96261b48739a906924
2.1 kB Download
md5:beeacbe97446cf4a33ced3daa1c364f9
2.3 kB Preview Download
md5:49569d315928d38f1a3b6585a48ac45e
216.3 kB Preview Download
md5:2796929851600d73958d45fd0fb67f5d
991 Bytes Preview Download
md5:b8cb534d314c17ef85dbfe5dba42d3ed
69.4 MB Download
md5:22bdad0f998aeb2570c6fb76b70b9e63
2.2 kB Download
md5:a0e9db97e3889332a8a7702e127cd19f
2.3 kB Preview Download
md5:65a82e8c2f0515e425750251a48c9023
211.1 kB Preview Download
md5:fbd5cf675e3f9af6b0c273f6f7bb6ae3
991 Bytes Preview Download
md5:7c116db8d7b039e742b2803ae8cf0abf
69.4 MB Download
md5:59cc16eab5ec72a3404ccd4cff5c020c
2.9 kB Download
md5:81b6134bb6f67ea50a9d2d62f353d7cf
2.3 kB Preview Download
md5:a73e1fb77f30e1326291eecf11d11614
196.7 kB Preview Download
md5:b37196bd70f9a8a8627d49318fa9a602
991 Bytes Preview Download
md5:5cc6b7dfb3c139be87547fd3298931c3
69.4 MB Download
md5:3129c44f7569c40f22977e1391d9572b
2.8 kB Download
md5:f202bc15cf863fbaa526ab468ec1f3b1
2.3 kB Preview Download
md5:76d2b2a44eadba36a9180c1ed93e37fe
197.2 kB Preview Download
md5:df985dad54459eec7341b98225d45417
991 Bytes Preview Download
md5:6d9c9598d3719d4ac852d23ba264fc40
69.4 MB Download
md5:10d7a73828672ce251b177f933745663
3.6 kB Download
md5:6591b1ba0097ac1ae0da18b149caac5a
2.3 kB Preview Download
md5:4d21e5623b89acabcf3e3d9f85aae014
192.8 kB Preview Download
md5:72a4e499045502ffae5854b9753fc1b6
991 Bytes Preview Download
md5:3e442c29b9a48221fd02a7ebda0faa7c
69.4 MB Download
md5:710e1a63aa37c126cdfc44d3daa9ecfe
3.4 kB Download
md5:5a4bc95a5fe8b50d617e3d233645c959
2.3 kB Preview Download
md5:61192291574516e280f73c820df2daa0
187.5 kB Preview Download
md5:730db5a6074f8bb767f8acedc3fa43a9
991 Bytes Preview Download
md5:f64e00102dc4fb35fc7aa63c1070476c
69.4 MB Download
md5:8f3d7565219aae3dcf337b5c42ea8163
3.5 kB Download
md5:59161d2323a13da673aa5b72627f4a97
2.3 kB Preview Download
md5:ec48b466439834eb12676c6310084236
255.5 kB Preview Download
md5:18b1e8aa188ccd2f7cd773e6e031caad
24.2 MB Preview Download
md5:0e01ef75a65fe1b45f002d576fa88f86
2.9 kB Preview Download