Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published August 20, 2020 | Version v1
Journal article Open

Grad–Shafranov reconstruction of the magnetic configuration in the reconnection X-point vicinity in compressible plasma

  • 1. Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria
  • 2. The Earth Physics Department, Saint Petersburg State University, 198504 Petrodvoretz, Russia
  • 3. Institute of Computational Modelling, Siberian Branch of the Russian Academy of Sciences, 660036 Krasnoyarsk, Russia

Description

The reconstruction problem for steady symmetrical two-dimensional magnetic reconnection is addressed in the frame of a two-fluid approximation with neglected ion current. This approach yields Poisson’s equation for the magnetic potential of the in-plane magnetic field, where the right-hand side contains the out-of-plane electron current density with the reversed sign. In the simplest case of uniform electron temperature and number density and neglecting the electron inertia, Poisson’s equation turns to the Grad–Shafranov one. With boundary conditions fixed at any unclosed curve (the satellite trajectory), both equations result in an ill-posed problem. Since the magnetic configuration in the reconnection region is highly stretched, one can make use of the boundary layer approximation; hence, the problem becomes well-posed. The described approach is generalized for the case of nonuniform electron temperature and number density. The benchmark reconstruction of the PIC simulations data has shown that the main contribution for inaccuracy arises from replacing Poisson’s equation by the equation of Grad–Shafranov. Under this substitution, the reachable cross-size of the reconstructed region is shrinking down to fractions of the proton inertial length. Artificial smoothing, demanded by solving the ill-posed problem, and boundary layer approximation represent two alternative methods of problem regularization. In terms of the reconstruction error, they perform nearly the same; the second method benefits from the comparative simplicity and less restrictions imposed on the boundary shape.

Files

Korovinskiy_2020_PoP_Grad-Shafranov reconstruction.pdf

Files (7.3 MB)

Additional details

Funding

Multiscale dynamics of magnetotail reconnection and substorm I 3506
FWF Austrian Science Fund