There is a newer version of the record available.

Published January 13, 2023 | Version 2023.1.0
Software Open

PlasmaPy

Creators

  • 1. Center for Astrophysics | Harvard & Smithsonian
  • 2. UCLA
  • 3. University of Rochester
  • 4. Los Alamos National Laboratory
  • 5. Chandigarh University
  • 6. University of York
  • 7. University of Massachusetts Amherst
  • 8. University of Sheffield
  • 9. Vanderbilt University
  • 10. Yale University
  • 11. American University
  • 12. University of Hawaiʻi at Mānoa
  • 13. CEA
  • 14. Princeton University
  • 15. Laboratoire de Physique des Plasmas
  • 16. University of Delaware
  • 17. University of Stuttgart
  • 18. Aperio Software
  • 19. MIT
  • 20. College of William & Mary
  • 21. Victoria University of Wellington
  • 22. Boston University
  • 23. PES University
  • 24. U.S. Naval Research Laboratory
  • 25. Planetary Science Institute
  • 26. Michigan State University
  • 27. University of Washington
  • 28. Phoenix Security Labs
  • 29. Mullard Space Science Laboratory
  • 30. Centre Spatial de l'École Polytechnique
  • 31. Laboratory for Atmospheric and Space Physics
  • 32. IPPLM
  • 33. University of Michigan
  • 34. University of Edinburgh
  • 35. UiT The Arctic University of Norway

Description

PlasmaPy is an open source Python package for plasma research and education.

Notes

Early development on PlasmaPy was partially supported by the U.S. Department of Energy through grant DE-SC0016363 that was funded through the NSF-DOE Partnership on Basic Plasma Science and Engineering; a Scholarly Studies grant awarded by the Smithsonian Institution; Google Summer of Code; and NASA Heliophysics Data Environment Enhancements (HDEE) grant 80NSSC20K0174.

Files

Files (8.8 MB)

Name Size Download all
md5:22ad151292a73406b89737661248cc6c
8.8 MB Download

Additional details

Related works

Is new version of
Software: 10.5281/zenodo.4313062 (DOI)
Software: 10.5281/zenodo.1436011 (DOI)

Funding

Collaborative Research: Frameworks: An open source software ecosystem for plasma physics 1931388
National Science Foundation
Collaborative Research: Frameworks: An open source software ecosystem for plasma physics 1931429
National Science Foundation
Collaborative Research: Frameworks: An open source software ecosystem for plasma physics 1931435
National Science Foundation
Collaborative Research: Frameworks: An open source software ecosystem for plasma physics 1931393
National Science Foundation

References

  • H. Alfvén. Existence of Electromagnetic-Hydrodynamic Waves. Nature, 150(3805):405–406, 1942. doi:10.1038/150405d0
  • G. Bekefi. Radiation Processes in Plasmas. Wiley, 1966. ISBN 9780471063506
  • P. M. Bellan. Improved basis set for low frequency plasma waves. Journal of Geophysical Research: Space Physics, 2012. doi:10.1029/2012JA017856
  • D. S. Bernstein. Beyond Legacy Code: Nine Practices to Extend the Life (and Value) of Your Software . Pragmatic Bookshelf, 1st edition, 2015. ISBN 9781680500790. URL: https://pragprog.com/titles/dblegacy/beyond-legacy-code
  • C. K. Birdsall and A. B. Langdon. Plasma Physics via Computer Simulation. CRC Press, 2004. doi:10.1201/9781315275048
  • D. Bohm. The Characteristics of Electrical Discharges in Magnetic Fields. McGraw-Hill, 1949
  • M. Bonitz. Quantum Kinetic Theory. Springer, 1998. doi:10.1007/978-3-319-24121-0
  • J. P. Boris. Relativistic plasma simulation—Optimization of a hybrid code. In J. P. Boris and R. A. Shanny, editors, Proceedings of Fourth Conference on Numerical Simulation of Plasmas, 3–67. Naval Research Laboratory, 1970. URL: https://apps.dtic.mil/sti/citations/ADA023511
  • S. I. Braginskii. Transport Processes in a Plasma. Reviews of Plasma Physics, 1:205, 1965
  • J. Callen. Draft Material For "Fundamentals of Plasma Physics" Book. Unpublished.
  • F. Chen. Introduction to Plasma Physics and Controlled Fusion. Springer, 3rd edition, 2016. doi:10.1007/978-3-319-22309-4
  • E. M. Epperlein and M. G. Haynes. Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation . Physics of Fluids, 29:1029, 1986. doi:10.1063/1.865901
  • Burton D. Fried and Samuel D. Conte. The Plasma Dispersion Function: The Hilbert Transformation of the Gaussian. Academic Press, 1961. doi:10.1016/C2013-0-12176-9
  • D. H. Froula, S. H. Glenzer, N. C. Luhmann, and J. Sheffield. Plasma Scattering of Electromagnetic Radiation. Academic Press, 2nd edition, 2011. ISBN 978-0-12-374877-5. doi:10.1016/C2009-0-20048-1
  • W. Fundamenski and O. E. Garcia. Comparison of Coulomb Collision Rates in the Plasma Physics and Magnetically Confined Fusion Literature . Technical Report EFDA–JET–R(07)01, EDFA-JET, 2007. URL: https://scipub.euro-fusion.org/archives/jet-archive/comparison-of-coulomb-collision-rates-in-the-plasma-physics-and-magnetically-confined-fusion-literature
  • D. O. Gericke, M. S. Murillo, and M. Schlanges. Dense plasma temperature equilibration in the binary collision approximation. Physical Review E, 65(3):036418, 2002. doi:10.1103/PhysRevE.65.036418
  • A. Haynes and Clare Parnell. A trilinear method for finding null points in a three-dimensional vector space. Physics of Plasmas, 14:082107, 08 2007. doi:10.1063/1.2756751
  • Joseph. V. Hollweg. Kinetic Alfvén wave revisited. Journal of Geophysical Research, 1999. doi:10.1029/1998JA900132
  • J.-Y. Ji and E. D. Held. Closure and transport theory for high-collisionality electron-ion plasmas. Physics of Plasmas, 2013. doi:10.1063/1.4801022
  • V. Khorikov. Unit Testing Principles, Practices, and Patterns. Manning Press, 1st edition, 2020. URL: https://www.manning.com/books/unit-testing
  • R. Osherove. The Art of Unit Testing: With Examples in .NET. Manning Press, 2nd edition, 2013. ISBN 9781617290893. URL: https://www.manning.com/books/the-art-of-unit-testing-second-edition
  • A. S. Richardson. NRL Plasma Formulary. Technical Report, Naval Research Laboratory, 2019. URL: https://www.nrl.navy.mil/News-Media/Publications/nrl-plasma-formulary
  • Derek Schaeffer. Generation of Quasi-Perpendicular Collisionless Shocks by a Laser-Driven Magnetic Piston. PhD thesis, University of California, Los Angeles, dec 2014. URL: https://doi.org/10.5281/zenodo.3766933, doi:10.5281/zenodo.3766933
  • J. Sheffield, D. Froula, S. H. Glenzer, and N. C. Luhmann, Jr. Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques. Academic Press, 2nd edition, 2011. ISBN 978-0-12-374877-5
  • L. Spitzer. Physics of Fully Ionized Gases. Interscience, 2nd edition, 1962
  • L. Spitzer and R. Härm. Transport phenomena in a Completely Ionized Gas. Phys. Rev., 89:977–981, 1953. doi:10.1103/PhysRev.89.977
  • T. H. Stix. Waves in Plasmas. AIP-Press, 1992. URL: https://link.springer.com/book/9780883188590
  • T. E. Stringer. Low-frequency waves in an unbounded plasma. Journal of Nuclear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research, 5(2):89–107, 1963. doi:10.1088/0368-3281/5/2/304
  • G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis, R. T. Guy, S. H. D. Haddock, K. D. Huff, I. M. Mitchell, M. D. Plumbley, B. Waugh, E. P. White, and P. Wilson. Best practices for scientific computing. PLoS Biology, 12(1):e1001745, 2014. doi:10.1371/journal.pbio.1001745
  • G. Wilson, J. Bryan, K. Cranston, J. Kitzes, L. Nederbragt, and T. K. Teal. Good enough practices in scientific computing. PLOS Computational Biology, 13(6):e1005510, 2017. doi:10.1371/journal.pcbi.1005510