Published January 2, 2023 | Version v1
Journal article Open

Exploring the Impacts of Different Music Genres on Oxidative Stress in Rat Brain and Serum

  • 1. Department of Neurology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Türkiye.
  • 2. Department of Neurology, Erzincan Binali Yıldırım University Faculty of Medicine, Erzincan, Türkiye.

Description

Abstract

Music reduces emotional stress, relieves anxiety, and is utilized while treating various diseases. The present study explored the impacts of various music genres at different decibels on the oxidation state in the brain tissue and serum. We carried out the study on 42 male Wistar Albino rats. The rats were randomized (six rats in each cage) as a control group and groups exposed to noise, rock music, and slow music at different decibels for 21 days and 4 hours a day. At the end of the experiment, we studied oxidant [malondialdehyde (MDA), nitric oxide, protein carbonyl (PC)] and antioxidant [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px)] parameters in the cerebral cortex, cerebellum, and serum. In the cortex, while MDA levels were low in the 100 dB(A) slow music group, the 50 dB(A) noise and rock music groups had elevated SOD, GSH-Px, and MDA levels when compared to the control group and higher MDA and GSH-Px levels when compared to the 50 dB(A) slow music group. In the cerebellum, although SOD levels did not significantly change, we found MDA and GSH-Px to increase in the 50 dB(A) and 100 dB(A) rock music groups and the 50 dB(A) noise group. Finally, we determined MDA and PC levels to be low and SOD levels to be high in the 50 dB(A) slow music group. Overall, that high dB rock music created oxidative stress in cerebellar tissue, that low dB rock music and noise created oxidative stress in the cortex and cerebellum, and that high and low dB slow music may have positive impacts on oxidative stress.

Özet

Müzik, emosyonel stresi azaltır, kaygıyı giderir ve çeşitli hastalıkların tedavisinde kullanılır. Bu çalışmada, farklı desibellerde çeşitli müzik türlerinin, beyin dokusu ve serumdaki oksidatif durum üzerine etkileri araştırıldı. Çalışma 42 adet erkek Wistar Albino cinsi rat üzerinde gerçekleştirildi. Ratlar her kafeste 6 adet olmak üzere 21 gün, günde 4 saat farklı desibel şiddetinde gürültü, rock müzik, slow müzik dinletilen ve kontrol grubu olmak üzere randomize edildi. Deney sonunda serebral korteks, serebellum ve serumdaki oksidan [malondialdehit (MDA), nitrik oksit, protein karbonil (PC)] ve antioksidan [süperoksit dismutaz (SOD), glutatyon peroksidaz (GSH-Px)] parametreler çalışıldı. Kortekste 100 dB (A) slow müzik grubunda MDA düzeyleri düşük iken, 50 dB (A) gürültü ve rock müzik grubunda; kontrolle karşılaştırıldığında SOD, GSH-Px ve MDA düzeyleri, 50 dB (A) slow müzik grubuyla karşılaştırıldığında MDA ve GSH-Px düzeyleri yüksekti. Serebellumda 50 dB (A) ve 100 dB (A) rock müzik ve 50 dB(A) gürültü grubunda SOD düzeyleri değişmemişken, MDA ve GSH-Px düzeyleri artmıştı. Son olarak 50 dB(A) slow müzik grubunda MDA ve PC düzeylerinin düşük, SOD düzeylerinin yüksek olduğunu bulduk. Genel olarak, yüksek dB rock müzik serebellar dokuda ve düşük dB rock müzik ve gürültü korteks ve serebellumda oksidatif stres oluşturdu. Yüksek ve düşük dB slow müziğin ise oksidatif stres üzerine olumlu etkilerinin olabileceği gözlemlendi.

Notes

Farklı Müzik Türlerinin Oksidatif Stres Üzerine Etkilerinin Rat Beyni ve Serumunda Araştırılması

Files

lms.2023.23.pdf

Files (505.6 kB)

Name Size Download all
md5:fa9fff4ad9f3038379347cb67e936654
505.6 kB Preview Download

Additional details

References

  • ‎1. Erseven H, Öztürk L, Atik MF (eds). Makamdan Şifaya (Müzikle Tedavide Türk Müziğinin Kullanımı) (2nd edition). ‎‎2015, Türkiye İş Bankası Kültür Yayınları, İstanbul.‎
  • ‎2. Satoh M. Music therapy for dementia and higher cognitive dysfunction: a review. Brain Nerve 2011; 63(12): 1370-7. ‎
  • ‎3. Ovayolu N, Ucan O, Pehlivan S, Pehlivan Y, Buyukhatipoglu H, Savas MC, et al. Listening to Turkish classical music ‎decreases patients' anxiety, pain, dissatisfaction and the dose of sedative and analgesic drugs during colonoscopy: a ‎prospective randomized controlled trial. World J Gastroenterol 2006; 12(46): 7532-6. ‎
  • ‎4. Okada K, Kurita A, Takase B, Otsuka T, Kodani E, Kusama Y, et al. Effects of music therapy on autonomic nervous ‎system activity, incidence of heart failure events, and plasma cytokine and catecholamine levels in elderly patients with ‎cerebrovascular disease and dementia. Int Heart J 2009; 50(1): 95-110. ‎
  • ‎5. Cervellin G, Lippi G. From music-beat to heart-beat: a journey in the complex interactions between music, brain and ‎heart. Eur J Intern Med 2011; 22(4): 371-4. ‎
  • ‎6. Pacchetti C, Mancini F, Aglieri R, Fundarò C, Martignoni E, Nappi G. Active music therapy in Parkinson's disease: an ‎integrative method for motor and emotional rehabilitation. Psychosom Med 2000; 62(3): 386-93. ‎
  • ‎7. Choi AN, Lee MS, Cheong KJ, Lee JS. Effects of group music intervention on behavioral and psychological symptoms ‎in patients with dementia: a pilot-controlled trial. Int J Neurosci 2009; 119(4): 471-81. ‎
  • ‎8. Kuester G, Rios L, Ortiz A, Miranda M. Effect of music on the recovery of a patient with refractory nonconvulsive ‎status epilepticus. Epilepsy Behav 2010; 18(4): 491-3. ‎
  • ‎9. Zubkova SM, Varakina NI, Mikhaĭlik LV, Bobkova AS, Chabanenko SS. The physiological and physicochemical ‎mechanisms of the therapeutic and prophylactic actions of a musically modulated electrical current in experimental ‎atherosclerosis. Vopr Kurortol Fizioter Lech Fiz Kult 2000; (2): 3-8. ‎
  • ‎10. Manikandan S, Devi RS. Antioxidant property of alpha-asarone against noise-stress-induced changes in different ‎regions of rat brain. Pharmacol Res 2005; 52(6): 467-74. ‎
  • ‎11. Yamane H, Nakai Y, Takayama M, Konishi K, Iguchi H, Nakagawa T, et al. The emergence of free radicals after ‎acoustic trauma and strial blood flow. Acta Otolaryngol Suppl. 1995; 519: 87-92. ‎
  • ‎12. Kramer S, Dreisbach L, Lockwood J, Baldwin K, Kopke R, Scranton S, et al. Efficacy of the antioxidant N-‎acetylcysteine (NAC) in protecting ears exposed to loud music. J Am Acad Audiol 2006; 17(4): 265-78. ‎
  • ‎13. Bhagat SP, Davis AM. Modification of otoacoustic emissions following ear-level exposure to MP3 player music. Int J ‎Audiol 2008; 47(12): 751-60. ‎
  • ‎14. Waqas M, Gao S, Iram-Us-Salam, Ali MK, Ma Y, Li W. Inner Ear Hair Cell Protection in Mammals against the Noise-‎Induced Cochlear Damage. Neural Plast 2018; 2018: 3170801. ‎
  • ‎15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem ‎‎1951; 193(1): 265-75. ‎
  • ‎16. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988; 34(3): 497-‎‎500. ‎
  • ‎17. Durak I, Yurtarslanl Z, Canbolat O, Akyol O. A methodological approach to superoxide dismutase (SOD) activity ‎assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin Chim Acta 1993; 214(1): 103-4. ‎
  • ‎18. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione ‎peroxidase. J Lab Clin Med 1967; 70(1): 158-69. ‎
  • ‎19. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-‎hydroxynonenal. Methods Enzymol 1990; 186: 407-21. ‎
  • ‎20. Cortas NK, Wakid NW. Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction ‎method. Clin Chem 1990; 36(8 Pt 1): 1440-3. ‎
  • ‎21. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively ‎modified proteins. Methods Enzymol 1990; 186: 464-78. ‎
  • ‎22. Floyd RA, Carney JM. Free radical damage to protein and DNA: mechanisms involved and relevant observations on ‎brain undergoing oxidative stress. Ann Neurol 1992; 32 Suppl: S22-7. ‎
  • ‎23. Ilhan A, Gurel A, Armutcu F, Kamisli S, Iraz M, Akyol O, et al. Ginkgo biloba prevents mobile phone-induced ‎oxidative stress in rat brain. Clin Chim Acta 2004; 340(1-2): 153-62. ‎
  • ‎24. Arjunan A, Rajan R. Noise and brain. Physiol Behav 2020; 227: 113136. ‎
  • ‎25. Ersoy A, Koc ER, Sahin S, Duzgun U, Acar B, Ilhan A. Possible effects of rosuvastatin on noise-induced oxidative ‎stress in rat brain. Noise Health 2014; 16(68): 18-25. ‎
  • ‎26. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative ‎stress. Clin Chim Acta 2003; 329(1-2): 23-38. ‎
  • ‎27. Manikandan S, Padma MK, Srikumar R, Jeya Parthasarathy N, Muthuvel A, Sheela Devi R. Effects of chronic noise ‎stress on spatial memory of rats in relation to neuronal dendritic alteration and free radical-imbalance in hippocampus ‎and medial prefrontal cortex. Neurosci Lett 2006; 399(1-2): 17-22. ‎
  • ‎28. Manikandan S, Srikumar R, Jeya Parthasarathy N, Sheela Devi R. Protective effect of Acorus calamus LINN on free ‎radical scavengers and lipid peroxidation in discrete regions of brain against noise stress exposed rat. Biol Pharm Bull ‎‎2005; 28(12): 2327-30. ‎
  • ‎29. Samson J, Sheela Devi R, Ravindran R, Senthilvelan M. Effect of noise stress on free radical scavenging enzymes in ‎brain. Environ Toxicol Pharmacol 2005; 20(1): 142-8. ‎
  • ‎30. Lee JH, Chang SY, Moy WJ, Oh C, Kim SH, Rhee CK, et al. Simultaneous bilateral laser therapy accelerates recovery ‎after noise-induced hearing loss in a rat model. PeerJ 2016; 4: e2252. ‎
  • ‎31. Mills JH. Effects of noise on auditory sensitivity, psychophysical tuning curves, and suppression. In: Hamernik RP, ‎Henderson D, Salvi R (eds), New Perspectives on Noise Induced Hearing Loss. 1982, Raven Press, New York. pp: 249-‎‎263.‎
  • ‎32. Bohne BA, Harding GW. Degeneration in the cochlea after noise damage: primary versus secondary events. Am J ‎Otol 2000; 21(4): 505-9. ‎
  • ‎33. Mandavilli BS, Rao KS. Neurons in the cerebral cortex are most susceptible to DNA-damage in aging rat brain. ‎Biochem Mol Biol Int 1996; 40(3): 507-14. ‎
  • ‎34. Watanabe K, Inai S, Hess A, Michel O, Yagi T. Acoustic stimulation promotes the expression of inducible nitric oxide ‎synthase in the vestibule of guinea pigs. Acta Otolaryngol Suppl 2004; (553): 54-7. ‎
  • ‎35. Shi X, Dai C, Nuttall AL. Altered expression of inducible nitric oxide synthase (iNOS) in the cochlea. Hear Res 2003; ‎‎177(1-2): 43-52. ‎
  • ‎36. Demirel R, Mollaoğlu H, Yeşilyurt H, Üçok K, Ayçiçek A, Akkaya M, et al. Noise induces oxidative stress in rat. Eur J ‎Gen Med 2009; 6(1): 20-4. ‎
  • ‎37. Simmons WW, Ungureanu-Longrois D, Smith GK, Smith TW, Kelly RA. Glucocorticoids regulate inducible nitric oxide ‎synthase by inhibiting tetrahydrobiopterin synthesis and L-arginine transport. J Biol Chem 1996; 271(39): 23928-37. ‎
  • ‎38. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007; 87(1): 315-‎‎424. ‎
  • ‎39. Padmaja S, Squadrito GL, Pryor WA. Inactivation of glutathione peroxidase by peroxynitrite. Arch Biochem Biophys ‎‎1998; 349(1): 1-6.‎