scipy/scipy: SciPy 1.10.0
Creators
- Ralf Gommers1
- Pauli Virtanen
- Evgeni Burovski
- Matt Haberland
- Warren Weckesser
- Travis E. Oliphant2
- Tyler Reddy3
- David Cournapeau4
- alexbrc
- Andrew Nelson
- Pearu Peterson1
- Josh Wilson
- endolith
- Nikolay Mayorov
- Ilhan Polat5
- Pamphile Roy6
- Stefan van der Walt7
- Matthew Brett8
- Denis Laxalde9
- Eric Larson10
- Jarrod Millman11
- Atsushi Sakai
- Lars
- peterbell101
- Paul van Mulbregt12
- CJ Carey12
- eric-jones
- Nicholas McKibben
- Robert Kern13
- Kai
- 1. Quansight
- 2. Quansight, OpenTeams
- 3. LANL
- 4. Mercari JP
- 5. Sandvik
- 6. @Quansight
- 7. University of California, Berkeley
- 8. London Interdisciplinary School
- 9. @dalibo
- 10. University of Washington
- 11. UC Berkeley
- 12. Google
- 13. @enthought
Description
SciPy 1.10.0 Release Notes
SciPy 1.10.0
is the culmination of 6
months of hard work. It contains
many new features, numerous bug-fixes, improved test coverage and better
documentation. There have been a number of deprecations and API changes
in this release, which are documented below. All users are encouraged to
upgrade to this release, as there are a large number of bug-fixes and
optimizations. Before upgrading, we recommend that users check that
their own code does not use deprecated SciPy functionality (to do so,
run your code with python -Wd
and check for DeprecationWarning
s).
Our development attention will now shift to bug-fix releases on the
1.10.x branch, and on adding new features on the main branch.
This release requires Python 3.8+
and NumPy 1.19.5
or greater.
For running on PyPy, PyPy3 6.0+
is required.
- A new dedicated datasets submodule (
scipy.datasets
) has been added, and is now preferred over usage ofscipy.misc
for dataset retrieval. - A new
scipy.interpolate.make_smoothing_spline
function was added. This function constructs a smoothing cubic spline from noisy data, using the generalized cross-validation (GCV) criterion to find the tradeoff between smoothness and proximity to data points. scipy.stats
has three new distributions, two new hypothesis tests, three new sample statistics, a class for greater control over calculations involving covariance matrices, and many other enhancements.
scipy.datasets
introduction
- A new dedicated
datasets
submodule has been added. The submodules is meant for datasets that are relevant to other SciPy submodules ands content (tutorials, examples, tests), as well as contain a curated set of datasets that are of wider interest. As of this release, all the datasets fromscipy.misc
have been added toscipy.datasets
(and deprecated inscipy.misc
). - The submodule is based on Pooch (a new optional dependency for SciPy), a Python package to simplify fetching data files. This move will, in a subsequent release, facilitate SciPy to trim down the sdist/wheel sizes, by decoupling the data files and moving them out of the SciPy repository, hosting them externally and downloading them when requested. After downloading the datasets once, the files are cached to avoid network dependence and repeated usage.
- Added datasets from
scipy.misc
:scipy.datasets.face
,scipy.datasets.ascent
,scipy.datasets.electrocardiogram
Added download and caching functionality:
scipy.datasets.download_all
: a function to download all thescipy.datasets
associated files at once.scipy.datasets.clear_cache
: a simple utility function to clear cached dataset files from the file system.scipy/datasets/_download_all.py
can be run as a standalone script for packaging purposes to avoid any external dependency at build or test time. This can be used by SciPy packagers (e.g., for Linux distros) which may have to adhere to rules that forbid downloading sources from external repositories at package build time.
scipy.integrate
improvements
- Added parameter
complex_func
toscipy.integrate.quad
, which can be setTrue
to integrate a complex integrand.
scipy.interpolate
improvements
scipy.interpolate.interpn
now supports tensor-product interpolation methods (slinear
,cubic
,quintic
andpchip
)- Tensor-product interpolation methods (
slinear
,cubic
,quintic
andpchip
) inscipy.interpolate.interpn
andscipy.interpolate.RegularGridInterpolator
now allow values with trailing dimensions. scipy.interpolate.RegularGridInterpolator
has a new fast path formethod="linear"
with 2D data, andRegularGridInterpolator
is now easier to subclassscipy.interpolate.interp1d
now can take a single value for non-spline methods.- A new
extrapolate
argument is available toscipy.interpolate.BSpline.design_matrix
, allowing extrapolation based on the first and last intervals. - A new function
scipy.interpolate.make_smoothing_spline
has been added. It is an implementation of the generalized cross-validation spline smoothing algorithm. Thelam=None
(default) mode of this function is a clean-room reimplementation of the classicgcvspl.f
Fortran algorithm for constructing GCV splines. - A new
method="pchip"
mode was aded toscipy.interpolate.RegularGridInterpolator
. This mode constructs an interpolator using tensor products of C1-continuous monotone splines (essentially, ascipy.interpolate.PchipInterpolator
instance per dimension).
scipy.sparse.linalg
improvements
- The spectral 2-norm is now available in
scipy.sparse.linalg.norm
. - The performance of
scipy.sparse.linalg.norm
for the default case (Frobenius norm) has been improved. - LAPACK wrappers were added for
trexc
andtrsen
. The
scipy.sparse.linalg.lobpcg
algorithm was rewritten, yielding the following improvements:- a simple tunable restart potentially increases the attainable accuracy for edge cases,
- internal postprocessing runs one final exact Rayleigh-Ritz method giving more accurate and orthonormal eigenvectors,
- output the computed iterate with the smallest max norm of the residual and drop the history of subsequent iterations,
- remove the check for
LinearOperator
format input and thus allow a simple function handle of a callable object as an input, - better handling of common user errors with input data, rather than letting the algorithm fail.
scipy.linalg
improvements
scipy.linalg.lu_factor
now accepts rectangular arrays instead of being restricted to square arrays.
scipy.ndimage
improvements
- The new
scipy.ndimage.value_indices
function provides a time-efficient method to search for the locations of individual values with an array of image data. - A new
radius
argument is supported byscipy.ndimage.gaussian_filter1d
andscipy.ndimage.gaussian_filter
for adjusting the kernel size of the filter.
scipy.optimize
improvements
scipy.optimize.brute
now coerces non-iterable/single-valueargs
into a tuple.scipy.optimize.least_squares
andscipy.optimize.curve_fit
now acceptscipy.optimize.Bounds
for bounds constraints.- Added a tutorial for
scipy.optimize.milp
. - Improved the pretty-printing of
scipy.optimize.OptimizeResult
objects. - Additional options (
parallel
,threads
,mip_rel_gap
) can now be passed toscipy.optimize.linprog
withmethod='highs'
.
scipy.signal
improvements
- The new window function
scipy.signal.windows.lanczos
was added to compute a Lanczos window, also known as a sinc window.
scipy.sparse.csgraph
improvements
- the performance of
scipy.sparse.csgraph.dijkstra
has been improved, and star graphs in particular see a marked performance improvement
scipy.special
improvements
- The new function
scipy.special.powm1
, a ufunc with signaturepowm1(x, y)
, computesx**y - 1
. The function avoids the loss of precision that can result wheny
is close to 0 or whenx
is close to 1. scipy.special.erfinv
is now more accurate as it leverages the Boost equivalent under the hood.
scipy.stats
improvements
- Added
scipy.stats.goodness_of_fit
, a generalized goodness-of-fit test for use with any univariate distribution, any combination of known and unknown parameters, and several choices of test statistic (Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling). - Improved
scipy.stats.bootstrap
: Default method'BCa'
now supports multi-sample statistics. Also, the bootstrap distribution is returned in the result object, and the result object can be passed into the function as parameterbootstrap_result
to add additional resamples or change the confidence interval level and type. - Added maximum spacing estimation to
scipy.stats.fit
. - Added the Poisson means test ("E-test") as
scipy.stats.poisson_means_test
. Added new sample statistics.
- Added
scipy.stats.contingency.odds_ratio
to compute both the conditional and unconditional odds ratios and corresponding confidence intervals for 2x2 contingency tables. - Added
scipy.stats.directional_stats
to compute sample statistics of n-dimensional directional data. - Added
scipy.stats.expectile
, which generalizes the expected value in the same way as quantiles are a generalization of the median.
- Added
Added new statistical distributions.
- Added
scipy.stats.uniform_direction
, a multivariate distribution to sample uniformly from the surface of a hypersphere. - Added
scipy.stats.random_table
, a multivariate distribution to sample uniformly from m x n contingency tables with provided marginals. - Added
scipy.stats.truncpareto
, the truncated Pareto distribution.
- Added
Improved the
fit
method of several distributions.scipy.stats.skewnorm
andscipy.stats.weibull_min
now use an analytical solution whenmethod='mm'
, which also serves a starting guess to improve the performance ofmethod='mle'
.scipy.stats.gumbel_r
andscipy.stats.gumbel_l
: analytical maximum likelihood estimates have been extended to the cases in which location or scale are fixed by the user.- Analytical maximum likelihood estimates have been added for
scipy.stats.powerlaw
.
Improved random variate sampling of several distributions.
- Drawing multiple samples from
scipy.stats.matrix_normal
,scipy.stats.ortho_group
,scipy.stats.special_ortho_group
, andscipy.stats.unitary_group
is faster. - The
rvs
method ofscipy.stats.vonmises
now wraps to the interval[-np.pi, np.pi]
. - Improved the reliability of
scipy.stats.loggamma
rvs
method for small values of the shape parameter.
- Drawing multiple samples from
Improved the speed and/or accuracy of functions of several statistical distributions.
- Added
scipy.stats.Covariance
for better speed, accuracy, and user control in multivariate normal calculations. scipy.stats.skewnorm
methodscdf
,sf
,ppf
, andisf
methods now use the implementations from Boost, improving speed while maintaining accuracy. The calculation of higher-order moments is also faster and more accurate.scipy.stats.invgauss
methodsppf
andisf
methods now use the implementations from Boost, improving speed and accuracy.scipy.stats.invweibull
methodssf
andisf
are more accurate for small probability masses.scipy.stats.nct
andscipy.stats.ncx2
now rely on the implementations from Boost, improving speed and accuracy.- Implemented the
logpdf
method ofscipy.stats.vonmises
for reliability in extreme tails. - Implemented the
isf
method ofscipy.stats.levy
for speed and accuracy. - Improved the robustness of
scipy.stats.studentized_range
for largedf
by adding an infinite degree-of-freedom approximation. - Added a parameter
lower_limit
toscipy.stats.multivariate_normal
, allowing the user to change the integration limit from -inf to a desired value. - Improved the robustness of
entropy
ofscipy.stats.vonmises
for large concentration values.
- Added
Enhanced
scipy.stats.gaussian_kde
.- Added
scipy.stats.gaussian_kde.marginal
, which returns the desired marginal distribution of the original kernel density estimate distribution. - The
cdf
method ofscipy.stats.gaussian_kde
now accepts alower_limit
parameter for integrating the PDF over a rectangular region. - Moved calculations for
scipy.stats.gaussian_kde.logpdf
to Cython, improving speed. - The global interpreter lock is released by the
pdf
method ofscipy.stats.gaussian_kde
for improved multithreading performance. - Replaced explicit matrix inversion with Cholesky decomposition for speed and accuracy.
- Added
Enhanced the result objects returned by many
scipy.stats
functions- Added a
confidence_interval
method to the result object returned byscipy.stats.ttest_1samp
andscipy.stats.ttest_rel
. - The
scipy.stats
functionscombine_pvalues
,fisher_exact
,chi2_contingency
,median_test
andmood
now return bunch objects rather than plain tuples, allowing attributes to be accessed by name. - Attributes of the result objects returned by
multiscale_graphcorr
,anderson_ksamp
,binomtest
,crosstab
,pointbiserialr
,spearmanr
,kendalltau
, andweightedtau
have been renamed tostatistic
andpvalue
for consistency throughoutscipy.stats
. Old attribute names are still allowed for backward compatibility. scipy.stats.anderson
now returns the parameters of the fitted distribution in ascipy.stats._result_classes.FitResult
object.- The
plot
method ofscipy.stats._result_classes.FitResult
now accepts aplot_type
parameter; the options are'hist'
(histogram, default),'qq'
(Q-Q plot),'pp'
(P-P plot), and'cdf'
(empirical CDF plot). - Kolmogorov-Smirnov tests (e.g.
scipy.stats.kstest
) now return the location (argmax) at which the statistic is calculated and the variant of the statistic used.
- Added a
Improved the performance of several
scipy.stats
functions.- Improved the performance of
scipy.stats.cramervonmises_2samp
andscipy.stats.ks_2samp
withmethod='exact'
. - Improved the performance of
scipy.stats.siegelslopes
. - Improved the performance of
scipy.stats.mstats.hdquantile_sd
. - Improved the performance of
scipy.stats.binned_statistic_dd
for several NumPy statistics, and binned statistics methods now support complex data.
- Improved the performance of
Added the
scramble
optional argument toscipy.stats.qmc.LatinHypercube
. It replacescentered
, which is now deprecated.- Added a parameter
optimization
to allscipy.stats.qmc.QMCEngine
subclasses to improve characteristics of the quasi-random variates. - Added tie correction to
scipy.stats.mood
. - Added tutorials for resampling methods in
scipy.stats
. scipy.stats.bootstrap
,scipy.stats.permutation_test
, andscipy.stats.monte_carlo_test
now automatically detect whether the providedstatistic
is vectorized, so passing thevectorized
argument explicitly is no longer required to take advantage of vectorized statistics.- Improved the speed of
scipy.stats.permutation_test
for permutation types'samples'
and'pairings'
. - Added
axis
,nan_policy
, and masked array support toscipy.stats.jarque_bera
. - Added the
nan_policy
optional argument toscipy.stats.rankdata
.
scipy.misc
module and all the methods inmisc
are deprecated in v1.10 and will be completely removed in SciPy v2.0.0. Users are suggested to utilize thescipy.datasets
module instead for the dataset methods.scipy.stats.qmc.LatinHypercube
parametercentered
has been deprecated. It is replaced by thescramble
argument for more consistency with other QMC engines.scipy.interpolate.interp2d
class has been deprecated. The docstring of the deprecated routine lists recommended replacements.
- There is an ongoing effort to follow through on long-standing deprecations.
The following previously deprecated features are affected:
- Removed
cond
&rcond
kwargs inlinalg.pinv
- Removed wrappers
scipy.linalg.blas.{clapack, flapack}
- Removed
scipy.stats.NumericalInverseHermite
and removedtol
&max_intervals
kwargs fromscipy.stats.sampling.NumericalInverseHermite
- Removed
local_search_options
kwarg frromscipy.optimize.dual_annealing
.
- Removed
scipy.stats.bootstrap
,scipy.stats.permutation_test
, andscipy.stats.monte_carlo_test
now automatically detect whether the providedstatistic
is vectorized by looking for anaxis
parameter in the signature ofstatistic
. If anaxis
parameter is present instatistic
but should not be relied on for vectorized calls, users must pass optionvectorized==False
explicitly.scipy.stats.multivariate_normal
will now raise aValueError
when the covariance matrix is not positive semidefinite, regardless of which method is called.
- Name (commits)
- h-vetinari (10)
- Jelle Aalbers (1)
- Oriol Abril-Pla (1) +
- Alan-Hung (1) +
- Tania Allard (7)
- Oren Amsalem (1) +
- Sven Baars (10)
- Balthasar (1) +
- Ross Barnowski (1)
- Christoph Baumgarten (2)
- Peter Bell (2)
- Sebastian Berg (1)
- Aaron Berk (1) +
- boatwrong (1) +
- boeleman (1) +
- Jake Bowhay (50)
- Matthew Brett (4)
- Evgeni Burovski (93)
- Matthias Bussonnier (6)
- Dominic C (2)
- Mingbo Cai (1) +
- James Campbell (2) +
- CJ Carey (4)
- cesaregarza (1) +
- charlie0389 (1) +
- Hood Chatham (5)
- Andrew Chin (1) +
- Daniel Ching (1) +
- Leo Chow (1) +
- chris (3) +
- John Clow (1) +
- cm7S (1) +
- cmgodwin (1) +
- Christopher Cowden (2) +
- Henry Cuzco (2) +
- Anirudh Dagar (12)
- Hans Dembinski (2) +
- Jaiden di Lanzo (24) +
- Felipe Dias (1) +
- Dieter Werthmüller (1)
- Giuseppe Dilillo (1) +
- dpoerio (1) +
- drpeteb (1) +
- Christopher Dupuis (1) +
- Jordan Edmunds (1) +
- Pieter Eendebak (1) +
- Jérome Eertmans (1) +
- Fabian Egli (2) +
- Sebastian Ehlert (2) +
- Kian Eliasi (1) +
- Tomohiro Endo (1) +
- Stefan Endres (1)
- Zeb Engberg (4) +
- Jonas Eschle (1) +
- Thomas J. Fan (9)
- fiveseven (1) +
- Neil Flood (1) +
- Franz Forstmayr (1)
- Sara Fridovich-Keil (1)
- David Gilbertson (1) +
- Ralf Gommers (251)
- Marco Gorelli (2) +
- Matt Haberland (387)
- Andrew Hawryluk (2) +
- Christoph Hohnerlein (2) +
- Loïc Houpert (2) +
- Shamus Husheer (1) +
- ideasrule (1) +
- imoiwm (1) +
- Lakshaya Inani (1) +
- Joseph T. Iosue (1)
- iwbc-mzk (1) +
- Nathan Jacobi (3) +
- Julien Jerphanion (5)
- He Jia (1)
- jmkuebler (1) +
- Johannes Müller (1) +
- Vedant Jolly (1) +
- Juan Luis Cano Rodríguez (2)
- Justin (1) +
- jvavrek (1) +
- jyuv (2)
- Kai Mühlbauer (1) +
- Nikita Karetnikov (3) +
- Reinert Huseby Karlsen (1) +
- kaspar (2) +
- Toshiki Kataoka (1)
- Robert Kern (3)
- Joshua Klein (1) +
- Andrew Knyazev (7)
- Jozsef Kutas (16) +
- Eric Larson (4)
- Lechnio (1) +
- Antony Lee (2)
- Aditya Limaye (1) +
- Xingyu Liu (2)
- Christian Lorentzen (4)
- Loïc Estève (2)
- Thibaut Lunet (2) +
- Peter Lysakovski (1)
- marianasalamoni (2) +
- mariprudencio (1) +
- Paige Martin (1) +
- Arno Marty (1) +
- matthewborish (3) +
- Damon McDougall (1)
- Nicholas McKibben (22)
- McLP (1) +
- mdmahendri (1) +
- Melissa Weber Mendonça (9)
- Jarrod Millman (1)
- Naoto Mizuno (2)
- Shashaank N (1)
- Pablo S Naharro (1) +
- nboudrie (2) +
- Andrew Nelson (52)
- Nico Schlömer (1)
- NiMlr (1) +
- o-alexandre-felipe (1) +
- Maureen Ononiwu (1) +
- Dimitri Papadopoulos (2) +
- partev (1) +
- Tirth Patel (10)
- Paulius Šarka (1) +
- Josef Perktold (1)
- Giacomo Petrillo (3) +
- Matti Picus (1)
- Rafael Pinto (1) +
- PKNaveen (1) +
- Ilhan Polat (6)
- Akshita Prasanth (2) +
- Sean Quinn (1)
- Tyler Reddy (155)
- Martin Reinecke (1)
- Ned Richards (1)
- Marie Roald (1) +
- Sam Rosen (4) +
- Pamphile Roy (105)
- sabonerune (2) +
- Atsushi Sakai (94)
- Daniel Schmitz (27)
- Anna Scholtz (1) +
- Eli Schwartz (11)
- serge-sans-paille (2)
- JEEVANSHI SHARMA (1) +
- ehsan shirvanian (2) +
- siddhantwahal (2)
- Mathieu Dutour Sikiric (1) +
- Sourav Singh (1)
- Alexander Soare (1) +
- Bjørge Solli (2) +
- Scott Staniewicz (1)
- Ethan Steinberg (3) +
- Albert Steppi (3)
- Thomas Stoeger (1) +
- Kai Striega (4)
- Tartopohm (1) +
- Mamoru TASAKA (2) +
- Ewout ter Hoeven (5)
- TianyiQ (1) +
- Tiger (1) +
- Will Tirone (1)
- Ajay Shanker Tripathi (1) +
- Edgar Andrés Margffoy Tuay (1) +
- Dmitry Ulyumdzhiev (1) +
- Hari Vamsi (1) +
- VitalyChait (1) +
- Rik Voorhaar (1) +
- Samuel Wallan (4)
- Stefan van der Walt (2)
- Warren Weckesser (145)
- wei2222 (1) +
- windows-server-2003 (3) +
- Marek Wojciechowski (2) +
- Niels Wouda (1) +
- WRKampi (1) +
- Yeonjoo Yoo (1) +
- Rory Yorke (1)
- Xiao Yuan (2) +
- Meekail Zain (2) +
- Fabio Zanini (1) +
- Steffen Zeile (1) +
- Egor Zemlyanoy (19)
- Gavin Zhang (3) +
A total of 184 people contributed to this release. People with a "+" by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.
Files
scipy/scipy-v1.10.0.zip
Files
(26.3 MB)
Name | Size | Download all |
---|---|---|
md5:0a66930024cb14c43989f80d20215e8f
|
26.3 MB | Preview Download |
Additional details
Related works
- Is supplement to
- https://github.com/scipy/scipy/tree/v1.10.0 (URL)