Published December 25, 2022 | Version v1
Dataset Open

MUSES Leaf Area Index (LAI) Derived from AVHRR Data Monthly Global 0.05º Geographic Grid Since 1981

Creators

  • 1. Beijing Normal University

Description

The MUltiscale Satellite remotE Sensing (MUSES) product suite includes products with different spatial and temporal resolutions for parameters such as Normalized Difference Vegetation Index (NDVI), Near-Infrared Reflectance of Vegetation (NIRv), Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Fractional Vegetation Coverage (FVC), Gross Primary Production (GPP), Net Primary Production (NPP). For more information about the MUSES products, please refer to this website (https://muses.bnu.edu.cn/).

This dataset is the MUSES global LAI product at 0.05º spatial resolution and monthly temporal resolution. The MUSES LAI product is provided on Geographic grid and spans from 1981 to 2019 (continuously updated). It was generated from time-series Land Long-Term Data Record (LTDR) Advanced very high resolution radiometer (AVHRR) daily surface reflectance product (Version 4) using general regression neural networks (GRNNs)  (Xiao et al., 2014; Xiao et al., 2016). The MUSES LAI product is spatially complete and temporally continuous.

Dataset Characteristics:

  • Spatial Coverage: 180º W – 180º E, 90º S – 90º N
  • Temporal Coverage: 1981 – 2019
  • Spatial Resolution: 0.05º (approximately 5 km)
  • Temporal Resolution: 1 month
  • Projection: Geographic
  • Data Format: HDF
  • Scale: 0.01
  • Valid Range: 0 – 1000

Citation (Please cite this paper whenever these data are used):

  1. Xiao Zhiqiang, Jinling Song, Hua Yang, Rui Sun and Juan Li. (2022). A 250 m resolution global leaf area index product derived from MODIS surface reflectance data. International Journal of Remote Sensing, 43(4), 1199-1225.
  2. Xiao Zhiqiang, et al. (2014). Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance. IEEE Transactions on Geoscience and Remote Sensing, 52, 209-223.
  3. Xiao Zhiqiang, et al. (2016). Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 54, 5301-5318.
  4. Xiao Zhiqiang, et al. (2017). Evaluation of four long time-series global leaf area index products. Agricultural and Forest Meteorology, 246, 218-230.

If you have any questions, please contact Prof. Zhiqiang Xiao (zhqxiao@bnu.edu.cn).

Files

Files (3.2 GB)

Name Size Download all
md5:372d537f0c0237bc459dc751b2d89ef1
81.1 MB Download
md5:bc2bcafa74a2759ff8814272fbf6e4a6
81.5 MB Download
md5:035feda3acde79e6385207520117ae18
81.9 MB Download
md5:17ebe8451409e846e391b01313105cd1
82.9 MB Download
md5:5ff6ae34f90fd344e48285bf085f06b7
81.6 MB Download
md5:153cb5b0a55cb9c3ad60f9d6e541019e
81.5 MB Download
md5:54adee4ac81aff39ccd7bac892f172fb
82.4 MB Download
md5:34814ddee107cdfafc43226079875cee
82.7 MB Download
md5:49a5cddee55327d6322838b0657d72b8
80.6 MB Download
md5:8de9b5b057a94818fb025f7d62011e0a
81.3 MB Download
md5:738d78f11337c6d8e7193b7f280493e5
81.8 MB Download
md5:79c501b855c45429b76b0b2a224319de
81.9 MB Download
md5:dc7ae47954332866f53c442c9281b4ea
83.9 MB Download
md5:24e63785bd6459575b49e31002b7d273
84.1 MB Download
md5:82a0ffa32edcaea4ea5eeaf24e998170
81.7 MB Download
md5:b5f9466421d59ce00be4d3fd23882499
81.6 MB Download
md5:f0e7d870495b2e93819c321c1784f179
82.3 MB Download
md5:0e4137ec7a0181e6a753acd25abd4ed3
82.7 MB Download
md5:220fdb2f7524560525f3b0b39d394f1e
83.1 MB Download
md5:5945e03fb612a9a801f06d0f110ce989
82.2 MB Download
md5:a54af80bca9f045b3ab413dfa3e64703
82.2 MB Download
md5:e4a550eac8bea2931c25111a55737a7b
81.7 MB Download
md5:c36407fbc12294a8a680538241291d41
82.0 MB Download
md5:ecdba51a7cb0bb87428c539f881834a3
82.4 MB Download
md5:75beeb03adfe82b5a79258a65cc17bae
82.6 MB Download
md5:69de4da7d8c74d66004af404d082c0bb
82.3 MB Download
md5:7300e81250a62fa0d1165ccf8aca20ba
82.0 MB Download
md5:018dc6f867880a4e08b5f722e8842a84
82.4 MB Download
md5:804994ec7bdcbf0bd50f9742d14bba29
82.5 MB Download
md5:f4a8ee08d29aae17df27a91f0547be16
82.5 MB Download
md5:86e47d39118fbcfc7c79c6291dcce77b
82.2 MB Download
md5:a24156b2b0cb341946f943f7bf4ca294
82.6 MB Download
md5:402c3663d22aa54ff8c9f6dcd8e2baaa
83.4 MB Download
md5:eb7825ae4844bedf78193c9c5508b56f
82.1 MB Download
md5:3f6b29d212342df885d3ced969403917
81.8 MB Download
md5:539a3b3bf9a19d72d6f27c91044085a6
82.6 MB Download
md5:3f44dc376aa097b270f9f4f8384c37e6
83.4 MB Download
md5:5fd1ae919ac82c7c27e12633204bf3a6
85.3 MB Download
md5:c5de08ad391526f6ddde5917280ab87a
86.7 MB Download