Published December 25, 2022 | Version v1
Dataset Open

MUSES Normalized Difference Vegetation Index (NDVI) 8-Day Global 0.05º Geographic Grid Since 1982

Creators

  • 1. Beijing Normal University

Description

The MUltiscale Satellite remotE Sensing (MUSES) product suite includes products with different spatial and temporal resolutions for parameters such as Normalized Difference Vegetation Index (NDVI), Near-Infrared Reflectance of Vegetation (NIRv), Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Fractional Vegetation Coverage (FVC), Gross Primary Production (GPP), Net Primary Production (NPP). For more information about the MUSES products, please refer to this website (https://muses.bnu.edu.cn/).

This dataset is the MUSES global NDVI product at 0.05º spatial resolution and 8-day temporal resolution. The MUSES NDVI product is provided on Geographic grid and spans from 1982 to 2015 (continuously updated). It was generated from the Land Long-Term Data Record (LTDR) Advanced very high resolution radiometer (AVHRR) daily surface reflectance product (Version 4) using a temporally continuous vegetation indices-based land-surface reflectance reconstruction (VIRR) method (Xiao et al., 2015; Xiao et al., 2017). The MUSES NDVI product is spatially complete and temporally continuous.

Dataset Characteristics:

  • Spatial Coverage: 180º W – 180º E, 90º S – 90º N
  • Temporal Coverage: 1982 – 2015
  • Spatial Resolution: 0.05º (approximately 5 km)
  • Temporal Resolution: 8 days
  • Projection: Geographic
  • Data Format: HDF
  • Scale: 0.0001
  • Valid Range: 0 – 10000

Citation (Please cite this paper whenever these data are used):

  1. Xiao Zhiqiang, et al. (2015). Reconstruction of Satellite-Retrieved Land-Surface Reflectance Based on Temporally-Continuous Vegetation Indices. Remote Sensing, 7, 9844-9864
  2. Xiao Zhiqiang, et al. (2017). Reconstruction of Long-Term Temporally Continuous NDVI and Surface Reflectance From AVHRR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 5551-5568

If you have any questions, please contact Prof. Zhiqiang Xiao (zhqxiao@bnu.edu.cn).

Files

Files (15.9 GB)

Name Size Download all
md5:c7de8c41ab230f71ba4448c941d985de
468.1 MB Download
md5:c2da4a4a1dc0efb4089a136baaddaedc
468.1 MB Download
md5:242dc688039e941b77c295430132c534
468.8 MB Download
md5:7c2eb3c6d2278d064fecc016eb064534
468.2 MB Download
md5:295e661c3f0ab8a38d789cd355a899aa
468.6 MB Download
md5:307268535e10fde98747dc6411bef24f
468.8 MB Download
md5:f5833081cf6c15541b28b77dfa65b73c
468.9 MB Download
md5:42028127f1d86b461101500103fdbada
468.2 MB Download
md5:5acfe3a158d8535e10557bf40ddcc47d
468.4 MB Download
md5:1a4d380730df06b80c1df340ddb0581f
467.9 MB Download
md5:70a1008564aa5eb7ffd59b7e78e74f3c
467.8 MB Download
md5:e167d35c347b61cb99c89fc0146a9956
468.8 MB Download
md5:ac35f719b0dd172c762cba04e843d93a
468.2 MB Download
md5:dcbaafff1ead2158ae493447880e057f
468.0 MB Download
md5:0997e768ea412a88fb337ee8f7efe95b
468.5 MB Download
md5:84880380a488170f2758344c89e5523e
468.5 MB Download
md5:35abc6d07f35a8ae1571506f7a64ef0c
469.0 MB Download
md5:a8f1101fea816ad1315a732b7935bd43
469.1 MB Download
md5:f94af4874c95281f994f6d69aafe4ca1
467.0 MB Download
md5:19503c0cb88143e923f13dacd0271996
469.5 MB Download
md5:e30ba5c51ebe50db521d235ff0c973dc
469.7 MB Download
md5:c0299f612c4a4c5e30bbe2f23b67f34b
470.0 MB Download
md5:464946dbbee4fe614e48466f93a549c9
470.3 MB Download
md5:f10141c88334f643d2e646cf367bd397
470.2 MB Download
md5:fedac9eda44e5fcab83c8e0d70dd38c6
469.9 MB Download
md5:01aaba2e727dacc386929b34954cdce5
469.7 MB Download
md5:39cc9f70044f389a991a836b59556521
469.9 MB Download
md5:8a1321d2041d8795ef3a579dae9486a7
469.7 MB Download
md5:10a276eae6992d8a55c1a66c2b8be635
469.9 MB Download
md5:6270eedea0608c32bee5303a42162194
470.1 MB Download
md5:5449cae6ee6e66451756fd5135b9cf45
470.5 MB Download
md5:a135f21d73ac5359dbe513f8be6ec7e6
470.8 MB Download
md5:981453c70e57e6e46f009b26c27b18d9
470.0 MB Download
md5:a5e8cf924ceda5e3048b2451b53bd9f6
470.4 MB Download