Journal article Open Access

A generalizable hybrid search framework for optimizing expensive design problems using surrogate models

Cosenza, Zachary; Block, David E.

Experimental optimization of physical and biological processes is a difficult task. To address this, sequential surrogate models combined with search algorithms have been employed to solve nonlinear high-dimensional design problems with expensive objective function evaluations. In this article, a hybrid surrogate framework was built to learn the optimal parameters of a diverse set of simulated design problems meant to represent real-world physical and biological processes in both dimensionality and nonlinearity. The framework uses a hybrid radial basis function/genetic algorithm with dynamic coordinate search response, utilizing the strengths of both algorithms. The new hybrid method performs at least as well as its constituent algorithms in 19 of 20 high-dimensional test functions, making it a very practical surrogate framework for a wide variety of optimization design problems. Experiments also show that the hybrid framework can be improved even more when optimizing processes with simulated noise.

This document is the Authors Accepted Manuscript (or "postprint") and may have minor differences from the Version of Record due to final copyedits. The final published version can be accessed at https://doi.org/10.1080/0305215X.2020.1826466.
Files (3.4 MB)
Name Size
Cosenza_2020_Post-PrintEdit.pdf
md5:ba8dcd4035abf6f99b15c02c2806988e
3.4 MB Download
49
31
views
downloads
Views 49
Downloads 31
Data volume 106.5 MB
Unique views 38
Unique downloads 26

Share

Cite as