PROBA-V Global Dataset 5 km - BHR
- 1. Rayference
- 2. Serco
Description
In the framework of the Spot/PROBA-V Surface Aerosol Retrieval at MEP (SPAR@MEP) ESA project, the CISAR algorithm, originally developed by Rayference for the joint retrieval of surface reflectance, aerosol and cloud single scattering properties, has been applied to PROBA-V observation globally during 2019 at 5km resolution. CISAR retrieves simultaneously the surface reflectance (represented by the RPV model) and the aerosol optical depth (AOD) in all PROBA-V bands plus the AOD at 500nm, with their corresponding pixel-level uncertainty. The retrieval uncertainty results from the propagation of all input, prior and inversion uncertainty through the inversion process. The processing has been performed in the Mission Exploitation Platform (MEP), developed by VITO. This Global Dataset includes the surface reflectance products. Specification on the filename convention, format and content of the products can be found on the Product Specification Document (PSD).
The products related to the aerosol retrieval products.
Files
D6_PSD_V2.pdf
Files
(28.4 GB)
Name | Size | Download all |
---|---|---|
md5:712a5715fa64fe9d9b96287932303263
|
583.6 MB | Download |
md5:dc76731e445d26841e695b2bec0e1ecc
|
588.7 MB | Download |
md5:b78515a16676e8cc6d5ae1504935be57
|
599.7 MB | Download |
md5:27ad8df023a88e2bed34e5c7315d137b
|
614.8 MB | Download |
md5:32f5388cd8209fded41492163181a4fd
|
642.8 MB | Download |
md5:f2acd336ea9058b76c0be9c7f45c6a25
|
663.7 MB | Download |
md5:5b7354d8a9477fdc23c96407a31516e3
|
675.4 MB | Download |
md5:80e5628c25f88e6e3b0a377255f62676
|
710.3 MB | Download |
md5:ddc864767b9e53c6105f5c92d071e08b
|
737.4 MB | Download |
md5:e4d055987f88abfe585f25e0a1663c55
|
762.0 MB | Download |
md5:c6a075558f279e6adb6c8d88915dc055
|
772.7 MB | Download |
md5:ae8672019388b07f76029fada7a1f718
|
785.9 MB | Download |
md5:439306fbfd9622de39acafd79142eb93
|
800.7 MB | Download |
md5:fdd2c17479a0646a91e5c3febb7dc380
|
814.8 MB | Download |
md5:eb71a1cb09ddb42d9c67202a05beee76
|
818.1 MB | Download |
md5:5839e102802915f4986d3280df538ccb
|
838.7 MB | Download |
md5:b25e738ec80606decbbafe34a16b99f3
|
850.3 MB | Download |
md5:99db1b8a1f7faacc40a241b6405ea24a
|
862.8 MB | Download |
md5:35a0fe31366c05b544b36a428bff8f52
|
865.6 MB | Download |
md5:c4aab632fde294edb392a02076c154c0
|
873.1 MB | Download |
md5:d131b6ba7df918aa439f8dd3d0ad5bfa
|
869.4 MB | Download |
md5:6cd71d9bbcc1c2bd44c97b397a749a9f
|
869.0 MB | Download |
md5:a5e8282080c9fa4cc667edcf6326d998
|
883.1 MB | Download |
md5:62c0f7b7d32c2a26d8c227a178c8aea5
|
891.9 MB | Download |
md5:0bcbd8c84f05a49ba3b7c0f55b631f9d
|
888.1 MB | Download |
md5:9212ec94c1ddc28027691e509ef6beb7
|
884.5 MB | Download |
md5:cc6ae5bcae1d8f1ed8617fb3cd68c37d
|
866.8 MB | Download |
md5:49232c649238e177c36eab4517761105
|
844.7 MB | Download |
md5:b7f2cd99563319f055e68d0d20867624
|
827.4 MB | Download |
md5:dd532e90d3d59e4f38f6694e03a56159
|
803.9 MB | Download |
md5:55d7db62a08d6e92c90578b07d0d18c7
|
772.9 MB | Download |
md5:d822a21d0dc4536f808784df5c7ef8eb
|
735.0 MB | Download |
md5:81d3e1fe570ff42b9429b72aeb17a2b6
|
708.9 MB | Download |
md5:cdaff53551072f3da1ed922ea4071d04
|
687.8 MB | Download |
md5:1a799760ce88f4ac16776f0bd893b5a6
|
673.5 MB | Download |
md5:90782b97b3f0385be28fb64677262837
|
665.7 MB | Download |
md5:31e49664420a3ea1fc66d63f82a0a5c3
|
667.5 MB | Download |
md5:bb5f206c2780f3057e5b4968bef997d7
|
165.9 kB | Preview Download |
Additional details
References
- Govaerts and Luffarelli (2018), Joint retrieval of surface reflectance and aerosol properties with continuous variation of the state variables in the solution space – Part 1: theoretical concept, https://amt.copernicus.org/articles/11/6589/2018/
- Luffarelli and Govaerts (2019), Joint retrieval of surface reflectance and aerosol properties with continuous variation of the state variables in the solution space – Part 2: application to geostationary and polar-orbiting satellite observations, https://amt.copernicus.org/articles/12/791/2019/
- Luffarelli et al (2022), Aerosol Optical Thickness Retrieval in Presence of Cloud: Application to S3A/SLSTR Observations, https://www.mdpi.com/2073-4433/13/5/691