There is a newer version of the record available.

Published October 30, 2020 | Version v5
Video/Audio Open

Quality Attributes Assessment in Self-Adaptive Systems: An Empirical Evaluation

Description

Self-adaptive  systems  are  capable  to  monitor  themselves and  the  context  surrounding  them,  detect  changes,  and  decide  how to  react  to  unexpected  conditions  with  minimal  human  supervision  at runtime. One of the challenges behind the development of self-adaptive systems is to handle the decision-making process during the analysis of trade off points between multiple quality attributes (QA). In Software Engineering, a widely-accepted method for evaluating software architectures QA goals is the Architecture Tradeoff Analysis Method (ATAM). However, few studies report on tradeoff analysis of QA in self-adaptive systems, despite its importance. Therefore, in this article, we proposed an  adapted  version  of  the  ATAM  to  handle  the  particularities  of  self-adaptive  systems.  We  employed  the  UPPAAL  SMC  to  assist  in  the analysis of a set of QA. To assess whether the proposed adaptation is feasible in practice, we carried out an empirical evaluation by running the  adapted  ATAM  in  a  self-adaptive  system  developed  following  the MAPE-K  model.  The  yielded  results  indicate  that  the  adapted  ATAM could support the design decision process in self-adaptive systems thatuse the MAPE-K model.

Files

ActivityDiagram.png

Files (34.0 MB)

Name Size Download all
md5:fe6edbb551cf02c8c59989e59a6bc872
171.5 kB Preview Download
md5:6d0d4c46bd5538f1013d928dfcf0726a
49.2 kB Preview Download
md5:ce88eb96e438cdfae56d46585505aae4
95.1 kB Preview Download
md5:b26aa5d2ab87ca843897d87d436d2b9d
32.2 kB Preview Download
md5:88e301242f3c5ece431dfad2577602e5
4.5 kB Preview Download
md5:da45794e9c3673ef0cbc634b7ad3cac3
4.5 kB Preview Download
md5:4aed3f27ddb9fbe4b56f297125f65627
4.5 kB Preview Download
md5:bc5aadcf868e7c72d9291b8e9abf0b37
4.5 kB Preview Download
md5:10378845c257cbd85e099127a05f24f6
4.6 kB Preview Download
md5:2c6c4acc6601f8f3eb3b674e240cbb9b
4.6 kB Preview Download
md5:be93a161a85262e9be9243b76b4b6b08
4.6 kB Preview Download
md5:9967ddc66ffa3fc67789cfbc2a1f120d
4.5 kB Preview Download
md5:705d11ca044a9c620f37b2884140e911
51.1 kB Preview Download
md5:9dc17c118df14b2d7063b6b99fccf346
140.8 kB Preview Download
md5:265b608da6023f76d9da3ca60657132b
90.0 kB Preview Download
md5:47cb61d3a121662464219957a953589c
26.2 kB Preview Download
md5:a3c4f68d2acc509e9b105292ab9251f5
138.1 kB Preview Download
md5:53ee7dc30afbb655bedf81b19b5472d2
105.6 kB Preview Download
md5:09ef4bb9b1af1a5bd95fd6ccfa120ca4
77.5 kB Preview Download
md5:93b376d75fead986fc77698d1741a84b
71.1 kB Preview Download
md5:19fd71cf3651b58d346f4cfe7829ce4e
20.6 kB Preview Download
md5:74e259f69cfa47230715f96a4df53d19
19.4 kB Preview Download
md5:39c6af07d7738319b3de85c9c1920687
30.9 MB Download
md5:580ec45b665391ae9fa7ac726f7627f9
10.8 kB Preview Download
md5:0d11daf19d0c22aff99efed963bfa0a2
11.2 kB Preview Download
md5:4b9382a6ed99823b92eafbedf6e44ebc
1.8 MB Preview Download
md5:597cf4cf525c20c72108aee3bdb5d107
51.8 kB Preview Download
md5:7453da707ff3ed8b5b11f3d63f7708c9
155.1 kB Preview Download