Quartz Crystal Microbalance with Dissipation Monitoring for biomedical applications: Open source and Low Cost prototype with active temperature control
Authors/Creators
- 1. Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta Prov. 11 (Km 10), (3100) Oro Verde, Entre Ríos, Argentina.
- 2. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática – Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta Prov. 11 (Km 10), (3100) Oro Verde, Entre Ríos, Argentina.
- 3. R.O.M.A.T. Creator Center. Colonia Avellaneda. Entre Ríos, Argentina. Investigador independiente, colaborador de la Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta Prov. 11 (Km 10), (3100) Oro Verde, Entre Ríos, Argentina.
- 4. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática – Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta Prov. 11 (Km 10), (3100) Oro Verde, Entre Ríos, Argentina.
Description
Advances in sensors have revolutionized biomedical engineering, having an extreme affinity for specific analytes and providing an effective, real-time, point-of-care testing to obtain an accurate diagnosis. Quartz Crystal Microbalance (QCM) is a well-established sensor that has been successfully applied in a broad range of applications to monitor and explore various surface interactions, in situ thin-film formations, and layer properties. This technology has gained interest in biomedical applications since novel QCM systems were able to work in liquid media. Quartz crystal microbalance with dissipation monitoring (QCM-D) is an expanded version of QCM that measures changes in damping properties of adsorbed layers and provides information on its viscoelastic nature. In this article, a QCM-D prototype designed for biomedical applications was developed and its validation was done by studying the viscosity of Polyethylene Glycol (PEG). Quantification of physical properties of PEG results important for vast medical applications. The statistics show a bigger dissipation as the fluid becomes more viscous and a very acceptable sensibility of the system when temperature is controlled.
Files
Fig1.png
Files
(9.1 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:663bd702e7ac75717a3e55ece17fc290
|
5.7 MB | Download |
|
md5:28e375177931363ae1e607e9009ab40b
|
12.5 kB | Download |
|
md5:c87c16842eda438da7758bf32ccdb2ec
|
12.5 kB | Download |
|
md5:c815415d716102bc7f01d7849e8d986c
|
274.5 kB | Download |
|
md5:294851796cbbf95cfc29fbd393ff1f1d
|
1.7 kB | Download |
|
md5:0d65d5c7396021fdc114beb30ade8d15
|
24.3 kB | Download |
|
md5:7935dfd907b3b49c72b8c67d08e05e62
|
359.1 kB | Preview Download |
|
md5:1a7c3779155f84f51519c621dacb717e
|
99.6 kB | Preview Download |
|
md5:e276c9bf595e633d100fa75780eaec9a
|
36.4 kB | Preview Download |
|
md5:94f777faef2a7960e4e772d8a6292c8d
|
21.3 kB | Preview Download |
|
md5:d8af112707f91b5f1d31901dac1e0eb7
|
73.2 kB | Preview Download |
|
md5:032cd73947fca0f53e252c639c192aed
|
39.3 kB | Preview Download |
|
md5:3184b4b14d118abfb4b5ae7fc0433db8
|
192.1 kB | Preview Download |
|
md5:bc42fea8f6a450ecfd5ace3fc4bc1cb5
|
21.2 kB | Preview Download |
|
md5:da1e5b0a85e45e93f70f0f9d0cea4ed0
|
21.3 kB | Preview Download |
|
md5:22c590e3b6e2266ab8f6e153a0a8033f
|
26.7 kB | Preview Download |
|
md5:03188c740096cf2d5ad88106f86512a8
|
105.4 kB | Preview Download |
|
md5:d01a174e29c9bf7dcbb3a563ffe8dedc
|
189.7 kB | Preview Download |
|
md5:6c57a6ce89997d2cc7241d24117646f4
|
114.8 kB | Preview Download |
|
md5:3f1f3eca5f0dc1096ead46a08cba2ac4
|
418.4 kB | Preview Download |
|
md5:156233d80985026ab9495329cccb5f4c
|
97.3 kB | Preview Download |
|
md5:beff67f01b913990783e21bdb09e1f61
|
5.9 kB | Preview Download |
|
md5:fabde8bdc571dbb46ffd2cf0804f4ac3
|
77.8 kB | Preview Download |
|
md5:35127e9c8e8d6cda401d465bf2f16c9e
|
95.8 kB | Preview Download |
|
md5:c672e79bb562c99d51f542f0a8505eff
|
597.0 kB | Preview Download |
|
md5:4579c498ce62e8bd4ad54a02bfe27784
|
3.5 kB | Download |
|
md5:22dd312a12230b604bdd0ec21e727271
|
7.7 kB | Download |
|
md5:db9d02ae98da7784a3a985affc9674d7
|
2.3 kB | Download |
|
md5:275e949af8a55198fbb33b1082723054
|
757 Bytes | Download |
|
md5:8d6a8f3436577ea8882e2339d02698b9
|
409 Bytes | Download |
|
md5:6954465e6dbdeb9caf986f8104051b95
|
1.1 kB | Download |
|
md5:5df1aabe519c2a040d319d543382300c
|
597 Bytes | Download |
|
md5:8a52c3425a48731fd6282ed4d82ebd36
|
175.1 kB | Download |
|
md5:9f7784e973db8aa41aeedd1b69c89829
|
256.7 kB | Download |
Additional details
References
- P. Roriz, S. Silva, O. Frazao, Optical Fiber Temperature Sensors and Their Biomedical Applications. Sensors, 20(7), (2020), 2113.
- J. Xi, J. Y. Chen, M. P. García, L. S. Penn, Quartz Crystal Microbalance in Cell Biology Studies. Biochips & Tissue Chips, (2013).
- C. Fredriksson, S. Kihlman, M. Rodahl, B. Kasemo, The Piezoelectric Quartz Crystal Mass and Dissipation Sensor: A Means of Studying Cell Adhesion. Langmuir , 14(2), (1998), 248–251.
- C. Tonda-Turo, I. Carmagnola, G. Ciardelli, Quartz Crystal Microbalance With Dissipation Monitoring: A Powerful Method to Predict the in vivo Behavior of Bioengineered Surfaces. Frontiers in Bioengineering and Biotechnology, 6, (2018).
- N. A. Saad, S. K. Zaaba, A. Zakaria, L. M. Kamarudin, K. Wan, A. B. Shariman, Quartz crystal microbalance for bacteria application review. 2014 2nd International Conference on Electronic Design (ICED), (2014), 455-460.
- M. R. Eslami, N. Alizadeh, A dual usage smart sorbent/recognition element based on nanostructured conducting molecularly imprinted polypyrrole for simultaneous potential-induced nanoextraction/determination of ibuprofen in biomedical samples by quartz crystal microbalance sensor. Sensors and Actuators B: Chemical, 220, (2015), 880-887.
- Y. Y. Jia, Study on pivot-point vibration of molecular bond-rupture events by quartz crystal microbalance for biomedical diagnostics, Int J Nanomedicine, 7, (2012), 381-391.
- C. K. O'sullivan, G. G Guilbault, Commercial quartz crystal microbalances-theory and applications. Biosensors & Bioelectronics, 14, (1999).
- A. Alassi, M. Benammar, D. Brett, Quartz crystal microbalance electronic interfacing systems: A review. Sensors (Switzerland) , 17(12), (2017).
- S. N. Songkhla , T. Nakamoto, Signal Processing of Vector Network Analyzer Measurement for Quartz Crystal Microbalance with Viscous Damping. IEEE Sensors Journal, 19(22), (2019), 10386–10392
- K. Patel, P.S. Negi, P. C. Kothari, Complex S-parameter measurement and its uncertainty evaluation on a vector network analyzer. Measurement, 42(1), (2009), 145-149.
- F. Neumann, N. Madaboosi, I. Hernández-Neuta, J. Salas, A. Ahlford, V. Mecea, M. Nilsson, QCM mass underestimation in molecular biotechnology: Proximity ligation assay for norovirus detection as a case study. Sensors and Actuators B: Chemical, 273, (2018).
- A. J. Olsson, I. R. Quevedo, D. He, M. Basnet, N. Tufenkji, Using the Quartz Crystal Microbalance with Dissipation Monitoring to Evaluate the Size of Nanoparticles Deposited on Surfaces.ACS Nano, 7( 9), (2013), 7833–7843.
- M. J. Swann, The Principles of QCM-I.
- F. Caspers,RF engineering basic concepts: S-parameters.(2012).
- S. Na Songkhla,T. Nakamoto, Interpretation of Quartz Crystal Microbalance Behavior with Viscous Film Using a Mason Equivalent Circuit. Chemosensors. 9 (9), (2021).
- M. Rodahl, F. Höök, C. Fredriksson, C. A, Keller, A. Krozer, P. Brzezinski, M. Voinova, B. Kasemo, Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discussions, 107, (1997), 229–246.
- A. Itoh, M. Ichihashi, Separate measurement of the density and viscosity of a liquid using a quartz crystal microbalance based on admittance analysis (QCM-A). Measurement Science and Technology, 22(1),(2011).
- A.Cao-Paz, L. Rodriguez-Pardo, J. Fariña, Temperature compensation of QCM sensors in liquid media. Sensors and Actuators, B: Chemical, 193, (2014), 78–81.
- Y. Tsuchiya, H. Kukita, T. Shiobara, K. Yukumatsu, E. Miyazaki, Temperature Controllable QCM Sensor with Accurate Temperature Measurement for Outgas and Contamination Assessment. 2019 IEEE Sensors, (2019), 1-4.
- C. Koçum, A. Erdamar, H. Ayhan, Design of temperature controlled quartz crystal microbalance system. Instrumentation Science and Technology, 38(1), (2010), 39–51.
- M. A. Amer, J. A. Chávez, M. J. García-Hernández, J. Salazar, A. Turó, Quartz Crystal Microbalance Holder Design for On-Line Sensing in Liquid Applications. International Journal of Electrical and Computer Engineering, 10(5), (2016). 684-687.
- D. Meléndrez, P. Hampitak, T. Jowitt, , M. Iliut, A. Vijayaraghavan, Development of an open-source thermally stabilized quartz crystal microbalance instrument for biomolecule-substrate binding assays on gold and graphene. Analytica Chimica Acta, 1156 (2021).
- T. R. Yan, C.F. Lee, H. C Chou, QCM as Cell-Based Biosensor. In Chemical Biology. InTech, (2012).
- P. Hampitak, T. A. Jowitt, D. Melendrez, M. Fresquet, P. Hamilton, M. Iliut, K.Nie, B. Spencer, R. Lennon, A. Vijayaraghavan, A Point-of-Care Immunosensor Based on a Quartz Crystal Microbalance with Graphene Biointerface for Antibody Assay. ACS Sensors, 5(11), (2020), 3520–3532.
- W. Shinobu, H. Kukita, S. Wakamatsu, Review about the Development of the Differential Expression QCM System. Electronics and Communications in Japan, 101(3), (2018), 66–72.
- S. Turkdogan, Design and Implementation of a Cost Effective Quartz Crystal Microbalance System for Monitoring Small Changes on any Surface. Balkan Journal of Electrical and Computer Engineering, (2019), 213–217.