Published December 15, 2022 | Version Submission
Journal article Open

Quartz Crystal Microbalance with Dissipation Monitoring for biomedical applications: Open source and Low Cost prototype with active temperature control

  • 1. Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta Prov. 11 (Km 10), (3100) Oro Verde, Entre Ríos, Argentina.
  • 2. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática – Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta Prov. 11 (Km 10), (3100) Oro Verde, Entre Ríos, Argentina.
  • 3. R.O.M.A.T. Creator Center. Colonia Avellaneda. Entre Ríos, Argentina. Investigador independiente, colaborador de la Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta Prov. 11 (Km 10), (3100) Oro Verde, Entre Ríos, Argentina.
  • 4. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática – Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta Prov. 11 (Km 10), (3100) Oro Verde, Entre Ríos, Argentina.

Description

Advances in sensors have revolutionized biomedical engineering, having an extreme affinity for specific analytes and providing an effective, real-time, point-of-care testing to obtain an accurate diagnosis. Quartz Crystal Microbalance (QCM) is a well-established sensor that has been successfully applied in a broad range of applications to monitor and explore various surface interactions, in situ thin-film formations, and layer properties. This technology has gained interest in biomedical applications since novel QCM systems were able to work in liquid media. Quartz crystal microbalance with dissipation monitoring (QCM-D) is an expanded version of QCM that measures changes in damping properties of adsorbed layers and provides information on its viscoelastic nature. In this article, a QCM-D prototype designed for biomedical applications was developed and its validation was done by studying the viscosity of Polyethylene Glycol (PEG). Quantification of physical properties of PEG results important for vast medical applications. The statistics show a bigger dissipation as the fluid becomes more viscous and a very acceptable sensibility of the system when temperature is controlled.

Files

Fig1.png

Files (9.1 MB)

Name Size Download all
md5:663bd702e7ac75717a3e55ece17fc290
5.7 MB Download
md5:28e375177931363ae1e607e9009ab40b
12.5 kB Download
md5:c87c16842eda438da7758bf32ccdb2ec
12.5 kB Download
md5:c815415d716102bc7f01d7849e8d986c
274.5 kB Download
md5:294851796cbbf95cfc29fbd393ff1f1d
1.7 kB Download
md5:0d65d5c7396021fdc114beb30ade8d15
24.3 kB Download
md5:7935dfd907b3b49c72b8c67d08e05e62
359.1 kB Preview Download
md5:1a7c3779155f84f51519c621dacb717e
99.6 kB Preview Download
md5:e276c9bf595e633d100fa75780eaec9a
36.4 kB Preview Download
md5:94f777faef2a7960e4e772d8a6292c8d
21.3 kB Preview Download
md5:d8af112707f91b5f1d31901dac1e0eb7
73.2 kB Preview Download
md5:032cd73947fca0f53e252c639c192aed
39.3 kB Preview Download
md5:3184b4b14d118abfb4b5ae7fc0433db8
192.1 kB Preview Download
md5:bc42fea8f6a450ecfd5ace3fc4bc1cb5
21.2 kB Preview Download
md5:da1e5b0a85e45e93f70f0f9d0cea4ed0
21.3 kB Preview Download
md5:22c590e3b6e2266ab8f6e153a0a8033f
26.7 kB Preview Download
md5:03188c740096cf2d5ad88106f86512a8
105.4 kB Preview Download
md5:d01a174e29c9bf7dcbb3a563ffe8dedc
189.7 kB Preview Download
md5:6c57a6ce89997d2cc7241d24117646f4
114.8 kB Preview Download
md5:3f1f3eca5f0dc1096ead46a08cba2ac4
418.4 kB Preview Download
md5:156233d80985026ab9495329cccb5f4c
97.3 kB Preview Download
md5:beff67f01b913990783e21bdb09e1f61
5.9 kB Preview Download
md5:fabde8bdc571dbb46ffd2cf0804f4ac3
77.8 kB Preview Download
md5:35127e9c8e8d6cda401d465bf2f16c9e
95.8 kB Preview Download
md5:c672e79bb562c99d51f542f0a8505eff
597.0 kB Preview Download
md5:4579c498ce62e8bd4ad54a02bfe27784
3.5 kB Download
md5:22dd312a12230b604bdd0ec21e727271
7.7 kB Download
md5:db9d02ae98da7784a3a985affc9674d7
2.3 kB Download
md5:275e949af8a55198fbb33b1082723054
757 Bytes Download
md5:8d6a8f3436577ea8882e2339d02698b9
409 Bytes Download
md5:6954465e6dbdeb9caf986f8104051b95
1.1 kB Download
md5:5df1aabe519c2a040d319d543382300c
597 Bytes Download
md5:8a52c3425a48731fd6282ed4d82ebd36
175.1 kB Download
md5:9f7784e973db8aa41aeedd1b69c89829
256.7 kB Download

Additional details

References

  • P. Roriz, S. Silva, O. Frazao, Optical Fiber Temperature Sensors and Their Biomedical Applications. Sensors, 20(7), (2020), 2113.
  • J. Xi, J. Y. Chen, M. P. García, L. S. Penn, Quartz Crystal Microbalance in Cell Biology Studies. Biochips & Tissue Chips, (2013).
  • C. Fredriksson, S. Kihlman, M. Rodahl, B. Kasemo, The Piezoelectric Quartz Crystal Mass and Dissipation Sensor:  A Means of Studying Cell Adhesion. Langmuir , 14(2), (1998), 248–251.
  • C. Tonda-Turo, I. Carmagnola, G. Ciardelli, Quartz Crystal Microbalance With Dissipation Monitoring: A Powerful Method to Predict the in vivo Behavior of Bioengineered Surfaces. Frontiers in Bioengineering and Biotechnology, 6, (2018).
  • N. A. Saad, S. K. Zaaba, A. Zakaria, L. M. Kamarudin, K. Wan, A. B. Shariman, Quartz crystal microbalance for bacteria application review. 2014 2nd International Conference on Electronic Design (ICED), (2014), 455-460.
  • M. R. Eslami, N. Alizadeh, A dual usage smart sorbent/recognition element based on nanostructured conducting molecularly imprinted polypyrrole for simultaneous potential-induced nanoextraction/determination of ibuprofen in biomedical samples by quartz crystal microbalance sensor. Sensors and Actuators B: Chemical, 220, (2015), 880-887.
  • Y. Y. Jia, Study on pivot-point vibration of molecular bond-rupture events by quartz crystal microbalance for biomedical diagnostics, Int J Nanomedicine, 7, (2012), 381-391.
  • C. K. O'sullivan, G. G Guilbault, Commercial quartz crystal microbalances-theory and applications. Biosensors & Bioelectronics, 14, (1999).
  • A. Alassi, M. Benammar, D. Brett, Quartz crystal microbalance electronic interfacing systems: A review. Sensors (Switzerland) , 17(12), (2017).
  • S. N. Songkhla , T. Nakamoto, Signal Processing of Vector Network Analyzer Measurement for Quartz Crystal Microbalance with Viscous Damping. IEEE Sensors Journal, 19(22), (2019), 10386–10392
  • K. Patel, P.S. Negi, P. C. Kothari, Complex S-parameter measurement and its uncertainty evaluation on a vector network analyzer. Measurement, 42(1), (2009), 145-149.
  • F. Neumann, N. Madaboosi, I. Hernández-Neuta, J. Salas, A. Ahlford, V. Mecea, M. Nilsson, QCM mass underestimation in molecular biotechnology: Proximity ligation assay for norovirus detection as a case study. Sensors and Actuators B: Chemical, 273, (2018).
  • A. J. Olsson, I. R. Quevedo, D. He, M. Basnet, N. Tufenkji, Using the Quartz Crystal Microbalance with Dissipation Monitoring to Evaluate the Size of Nanoparticles Deposited on Surfaces.ACS Nano, 7( 9), (2013), 7833–7843.
  • M. J. Swann, The Principles of QCM-I.
  • F. Caspers,RF engineering basic concepts: S-parameters.(2012).
  • S. Na Songkhla,T. Nakamoto, Interpretation of Quartz Crystal Microbalance Behavior with Viscous Film Using a Mason Equivalent Circuit. Chemosensors. 9 (9), (2021).
  • M. Rodahl, F. Höök, C. Fredriksson, C. A, Keller, A. Krozer, P. Brzezinski, M. Voinova, B. Kasemo, Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discussions, 107, (1997), 229–246.
  • A. Itoh, M. Ichihashi, Separate measurement of the density and viscosity of a liquid using a quartz crystal microbalance based on admittance analysis (QCM-A). Measurement Science and Technology, 22(1),(2011).
  • A.Cao-Paz, L. Rodriguez-Pardo, J. Fariña, Temperature compensation of QCM sensors in liquid media. Sensors and Actuators, B: Chemical, 193, (2014), 78–81.
  • Y. Tsuchiya, H. Kukita, T. Shiobara, K. Yukumatsu, E. Miyazaki, Temperature Controllable QCM Sensor with Accurate Temperature Measurement for Outgas and Contamination Assessment. 2019 IEEE Sensors, (2019), 1-4.
  • C. Koçum, A. Erdamar, H. Ayhan, Design of temperature controlled quartz crystal microbalance system. Instrumentation Science and Technology, 38(1), (2010), 39–51.
  • M. A. Amer, J. A. Chávez, M. J. García-Hernández, J. Salazar, A. Turó, Quartz Crystal Microbalance Holder Design for On-Line Sensing in Liquid Applications. International Journal of Electrical and Computer Engineering, 10(5), (2016). 684-687.
  • D. Meléndrez, P. Hampitak, T. Jowitt, , M. Iliut, A. Vijayaraghavan, Development of an open-source thermally stabilized quartz crystal microbalance instrument for biomolecule-substrate binding assays on gold and graphene. Analytica Chimica Acta, 1156 (2021).
  • T. R. Yan, C.F. Lee, H. C Chou, QCM as Cell-Based Biosensor. In Chemical Biology. InTech, (2012).
  • P. Hampitak, T. A. Jowitt, D. Melendrez, M. Fresquet, P. Hamilton, M. Iliut, K.Nie, B. Spencer, R. Lennon, A. Vijayaraghavan, A Point-of-Care Immunosensor Based on a Quartz Crystal Microbalance with Graphene Biointerface for Antibody Assay. ACS Sensors, 5(11), (2020), 3520–3532.
  • W. Shinobu, H. Kukita, S. Wakamatsu, Review about the Development of the Differential Expression QCM System. Electronics and Communications in Japan, 101(3), (2018), 66–72.
  • S. Turkdogan, Design and Implementation of a Cost Effective Quartz Crystal Microbalance System for Monitoring Small Changes on any Surface. Balkan Journal of Electrical and Computer Engineering, (2019), 213–217.