Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published March 8, 2022 | Version 1
Journal article Open

Nonlinear field-control of terahertz waves in random media for spatiotemporal focusing

  • 1. Emergent Photonics (EPic) Lab, Department of Physics and Astronomy, University of Sussex, Brighton, BN19QH, UK

Description

Controlling the transmission of broadband optical pulses in scattering media is a critical open challenge in photonics. To date, wavefront shaping techniques at optical frequencies have been successfully applied to control the spatial properties of multiple-scattered light. However, a fundamental restriction in achieving an equivalent degree of control over the temporal properties of a broadband pulse is the limited availability of experimental techniques to detect the coherent properties (i.e., the spectral amplitude and absolute phase) of the transmitted field. Terahertz experimental frameworks, on the contrary, enable measuring the field dynamics of broadband pulses at ultrafast (sub-cycle) time scales directly. In this work, we provide a theoretical/numerical demonstration that, within this context, complex scattering can be used to achieve spatio-temporal control of instantaneous fields and manipulate the temporal properties of single-cycle pulses by solely acting on spatial degrees of freedom of the illuminating field. As direct application scenarios, we demonstrate spatio-temporal focusing, chirp compensation, and control of the carrier-envelope-offset of a transform-limited THz pulse.

Files

openreseurope-2-15661.pdf

Files (3.1 MB)

Name Size Download all
md5:cb49fa2337dbde3c1cc73cbfc9e7a136
3.1 MB Preview Download

Additional details

References

  • Badon A, Boccara AC, Lerosey G (2017). Multiple scattering limit in optical microscopy. Opt Express. doi:10.1364/OE.25.028914
  • Kelsall D (1973). Optical "seeing" through the atmosphere by an interferometric technique*. JOSA. doi:10.1364/JOSA.63.001472
  • Muller RA, Buffington A (1974). Real-time correction of atmospherically degraded telescope images through image sharpening. JOSA. doi:10.1364/JOSA.64.001200
  • Liu Y, Chen L, Liu W (2019). Resolution-enhanced imaging through scattering media by high-order correlation. Appl Opt. doi:10.1364/AO.58.002350
  • Hampson KM, Turcotte R, Miller DT (2021). Adaptive optics for high-resolution imaging. Nat Rev Methods Primer. doi:10.1038/s43586-021-00066-7
  • Vellekoop IM, Lagendijk A, Mosk AP (2010). Exploiting disorder for perfect focusing. Nat Photonics. doi:10.1038/nphoton.2010.3
  • (2001). Waves and Imaging through Complex Media. doi:10.1007/978-94-010-0975-1
  • Goodman PJ (2010). Speckle Phenomena in Optics.
  • Bertolotti J, van Putten EJ, Blum C (2012). Non-invasive imaging through opaque scattering layers. Nature. doi:10.1038/nature11578
  • Popoff SM, Lerosey G, Carminati R (2010). Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media. Phys Rev Lett. doi:10.1103/PhysRevLett.104.100601
  • Tyson RK (1997). Principles of Adaptive Optics, Second Edition.
  • Shemonski ND, South FA, Liu YZ (2015). Computational high-resolution optical imaging of the living human retina. Nat Photonics. doi:10.1038/nphoton.2015.102
  • Rueckel M, Mack-Bucher JA, Denk W (2006). Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc Natl Acad Sci. doi:10.1073/pnas.0604791103
  • Pierangeli D, Palmieri V, Moriconi C (2020). Living optical random neural network with three dimensional tumor spheroids for cancer morphodynamics. Commun Phys. doi:10.1038/s42005-020-00428-9
  • Fleming A, Conti C, Falco AD (2019). Perturbation of Transmission Matrices in Nonlinear Random Media. Ann Phys. doi:10.1002/andp.201900091
  • Pierangeli D, Marcucci G, Conti C (2021). Photonic extreme learning machine by free-space optical propagation. Photonics Res. doi:10.1364/PRJ.423531
  • Dong J, Gigan S, Krzakala F (2018). Scaling Up Echo-State Networks With Multiple Light Scattering. 2018 IEEE Statistical Signal Processing Workshop (SSP). doi:10.1109/SSP.2018.8450698
  • Dong J, Rafayelyan M, Krzakala F (2020). Optical Reservoir Computing Using Multiple Light Scattering for Chaotic Systems Prediction. IEEE J Sel Top Quantum Electron. doi:10.1109/JSTQE.2019.2936281
  • Yaqoob Z, Psaltis D, Feld MS (2008). Optical phase conjugation for turbidity suppression in biological samples. Nat Photonics. doi:10.1038/nphoton.2007.297
  • Cui M, Yang C (2010). Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt Express. doi:10.1364/OE.18.003444
  • Katz O, Small E, Bromberg Y (2011). Focusing and compression of ultrashort pulses through scattering media. Nat Photonics. doi:10.1038/nphoton.2011.72
  • van Beijnum F, van Putten EG, Lagendijk A (2011). Frequency bandwidth of light focused through turbid media. Opt Lett. doi:10.1364/OL.36.000373
  • Mounaix M, Defienne H, Gigan S (2016). Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach. Phys Rev A. doi:10.1103/PhysRevA.94.041802
  • Lemoult F, Lerosey G, de Rosny J (2009). Manipulating Spatiotemporal Degrees of Freedom of Waves in Random Media. Phys Rev Lett. doi:10.1103/PhysRevLett.103.173902
  • Aulbach J, Gjonaj B, Johnson PM (2011). Control of Light Transmission through Opaque Scattering Media in Space and Time. Phys Rev Lett. doi:10.1103/PhysRevLett.106.103901
  • Webster MA, Gerke TD, Weiner AM (2004). Spectral and temporal speckle field measurements of a random medium. Opt Lett. doi:10.1364/ol.29.001491
  • Tal E, Silberberg Y (2006). Transformation from an ultrashort pulse to a spatiotemporal speckle by a thin scattering surface. Opt Lett. doi:10.1364/ol.31.003529
  • Johnson PM, Imhof A, Bret BPJ (2003). Time-resolved pulse propagation in a strongly scattering material. Phys Rev E Stat Nonlin Soft Matter Phys. doi:10.1103/PhysRevE.68.016604
  • Bruce NC, Schmidt FE, Dainty JC (1995). Investigation of the temporal spread of an ultrashort light pulse on transmission through a highly scattering medium. Appl Opt. doi:10.1364/AO.34.005823
  • Vellekoop IM, Mosk AP (2007). Focusing coherent light through opaque strongly scattering media. Opt Lett. doi:10.1364/ol.32.002309
  • Wei X, Shen Y, Jing JC (2020). Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb. Sci Adv. doi:10.1126/sciadv.aay1192
  • McCabe DJ, Tajalli A, Austin DR (2011). Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nat Commun. doi:10.1038/ncomms1434
  • Boniface A, Gusachenko I, Dholakia K (2019). Rapid broadband characterization of scattering medium using hyperspectral imaging. Optica. doi:10.1364/OPTICA.6.000274
  • French R, Gigan S, Muskens OL (2017). Speckle-based hyperspectral imaging combining multiple scattering and compressive sensing in nanowire mats. Opt Lett. doi:10.1364/OL.42.001820
  • Andreoli D, Volpe G, Popoff S (2015). Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix. Sci Rep. doi:10.1038/srep10347
  • Withayachumnankul W, Naftaly M (2014). Fundamentals of Measurement in Terahertz Time-Domain Spectroscopy. J Infrared Millim Terahertz Waves. doi:10.1007/s10762-013-0042-z
  • Gentilini S, Missori M, Ghofraniha N (2020). Terahertz Radiation Transport in Photonic Glasses. Ann Phys. doi:10.1002/andp.202000005
  • Pearce J, Mittleman DM (2002). Scale model experimentation: using terahertz pulses to study light scattering. Phys Med Biol. doi:10.1088/0031-9155/47/21/321
  • Pearce J, Mittleman DM (2003). Using terahertz pulses to study light scattering. Phys B Condens Matter. doi:10.1016/S0921-4526(03)00467-8
  • Pearce J, Mittleman DM (2001). Propagation of single-cycle terahertz pulses in random media. Opt Lett. doi:10.1364/ol.26.002002
  • Oldfield C, Bowman T, El-Shcnawcc M (2018). Development of Tunable Breast Tissue Phantoms for Terahertz Imaging. doi:10.1109/APUSNCURSINRSM.2018.8608493
  • Walker GC, Berry E, Smye SW (2004). Materials for phantoms for terahertz pulsed imaging. Phys Med Biol. doi:10.1088/0031-9155/49/21/n01
  • Vilagosh Z, Lajevardipour A, Wood A (2018). Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages. doi:10.1117/12.2283206
  • Walker GC, Berry E, Smye SW (2004). Modelling the propagation of terahertz radiation through a tissue simulating phantom. Phys Med Biol. doi:10.1088/0031-9155/49/10/002
  • Chau KJ, Elezzabi AY (2005). Terahertz transmission through ensembles of subwavelength-size metallic particles. Phys Rev B. doi:10.1103/PhysRevB.72.075110
  • Mounaix M, Andreoli D, Defienne H (2016). Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix. Phys Rev Lett. doi:10.1103/PhysRevLett.116.253901
  • Sadel C (2011). Relations between transfer and scattering matrices in the presence of hyperbolic channels. J Math Phys. doi:10.1063/1.3669483
  • Judkewitz B, Horstmeyer R, Vellekoop IM (2015). Translation correlations in anisotropically scattering media. Nat Phys.
  • Arienzo A, Argenti F, Alparone L (2020). Accurate Despeckling and Estimation of Polarimetric Features by Means of a Spatial Decorrelation of the Noise in Complex PolSAR Data. Remote Sens. doi:10.3390/rs12020331
  • Bergström D (2012). Surface Generation & Analysis - MySimLabs.
  • Mosk AP, Lagendijk A, Lerosey G (2012). Controlling waves in space and time for imaging and focusing in complex media. Nat Photon.
  • Olivieri L, Totero Gongora JS, Pasquazi A (2018). Time-Resolved Nonlinear Ghost Imaging. ACS Photonics. doi:10.1021/acsphotonics.8b00653
  • Olivieri L, Totero Gongora JS, Peters L (2020). Hyperspectral terahertz microscopy via nonlinear ghost imaging. Optica. doi:10.1364/OPTICA.381035
  • Totero Gongora JS, Olivieri L, Peters L (2020). Route to Intelligent Imaging Reconstruction via Terahertz Nonlinear Ghost Imaging. Micromachines (Basel). doi:10.3390/mi11050521
  • Gallot G, Grischkowsky D (1999). Electro-optic detection of terahertz radiation. JOSA B. doi:10.1364/JOSAB.16.001204
  • Jin H, Hwang B, Lee S (2021). Limiting the incident NA for efficient wavefront shaping through thin anisotropic scattering media. Optica. doi:10.1364/OPTICA.413174
  • Totero Gongora JS, Peccianti M, Cecconi V (2022). Figure data for "Nonlinear field-control of terahertz waves in random media for spatiotemporal focusing".
  • van Albada MP, van Tiggelen BA, Lagendijk A (1991). Speed of propagation of classical waves in strongly scattering media. Phys Rev Lett. doi:10.1103/PhysRevLett.66.3132
  • Vellekoop IM, Mosk AP (2008). Phase control algorithms for focusing light through turbid media. Opt Commun. doi:10.1016/j.optcom.2008.02.022
  • Schilt S, Südmeyer T (2015). Carrier-Envelope Offset Stabilized Ultrafast Diode-Pumped Solid-State Lasers. Appl Sci. doi:10.3390/app5040787
  • Imran T, Lee YS, Nam CH (2007). Stabilization and control of the carrier-envelope phase of high-power femtosecond laser pulses using the direct locking technique. Opt Express. doi:10.1364/oe.15.000104
  • Okubo S, Onae A, Nakamura K (2018). Offset-free optical frequency comb self-referencing with an f-2f interferometer. Optica. doi:10.1364/OPTICA.5.000188
  • Papadopoulos IN, Jouhanneau JS, Poulet JFA (2017). Scattering compensation by focus scanning holographic aberration probing (F-SHARP). Nat Photon. doi:10.1038/nphoton.2016.252
  • Frazier M, Taddese B, Xiao B (2013). Nonlinear time reversal of classical waves: Experiment and model. Phys Rev E Stat Nonlin Soft Matter Phys. doi:10.1103/PhysRevE.88.062910
  • Veli M, Mengu D, Yardimci NT (2021). Terahertz pulse shaping using diffractive surfaces. Nat Commun. doi:10.1038/s41467-020-20268-z
  • Li J, Mengu D, Yardimci NT (2021). Spectrally encoded single-pixel machine vision using diffractive networks. Sci Adv. doi:10.1126/sciadv.abd7690
  • Vellekoop IM, Aegerter CM (2010). Scattered light fluorescence microscopy: imaging through turbid layers. Opt Lett. doi:10.1364/OL.35.001245