Different Types and Modifications of Polymerase Chain Reaction
Creators
- 1. Department of Medical Microbiology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Türkiye.
Description
Özet
Bu çalışmada, tıbbi araştırmalarda ve moleküler biyoloji alanında kullanıma girmesi ile bilimsel çalışmalara ivme kazandıran polimeraz zincir reaksiyonunun (PCR), teknolojik değişimler ve ilerlemeler ile birlikte geliştirilen farklı tipleri ve uygulama alanlarına güncel bir bakış sunmak amaçlanmıştır. PCR temelli yöntemler genel olarak enfeksiyöz hastalıkların tanısında, mikroorganizma tiplendirmesinde, gen ekspresyonu analizinde, epidemiyoloji ve taksonomi alanlarında, onkolojik çalışmalarda, DNA klonlanmasında, nokta mutasyonlarının analizinde, transpozon elemanlarının yerleştirilmesinde, polimorfizm çalışmalarında, popülasyon tiplendirmesinde, filogenetik analizlerde, ilaç düzeyi analizinde ve otoantikor tespitinde olmak üzere birçok alanda kullanılmaktadır. Çoklu hedeflerin çoklu primer çiftleri kullanılarak aynı anda amplifikasyonu için multipleks PCR, genetik olarak birbiri ile ilişkili mikroorganizmaların ortak gen bölgelerinin amplifikasyonu için konsensus PCR, mikrobiyal genomlardaki tekrarlayan parmak izi DNA dizilerinin amplifikasyonu için rep-PCR, nonspesifik primer bağlanmalarını azaltmak ve sensitiviteyi arttırmak için nested PCR, istenmeyen yan ürünlerin ve primer dimerlerinin oluşumunu azaltmak için hot start PCR, spesifik olmayan çapa primerleri kullanılarak bilinmeyen gen bölgelerinin amplifikasyonunu sağlamak için anchored PCR, bilinen tek bir primer bağlama bölgesi ile bir DNA parçasının amplifikasyonu için ligasyon aracılı ve homopolimerli PCR, bağlanma sıcaklığını düzenleyerek yanlış eşleşmeleri önlemek için touch-down ve touch-up PCR, abazik primerler kullanılarak gen klonlamak amacıyla DNA parçalarının amplifikasyonu için autosticky PCR, sitozin rezidülerinin metilasyon paternlerini tanımlamak için metilasyon spesifik PCR, bilinmeyen yan DNA bölgelerin sekans analizi için ters (invers) PCR, farklı konsantrasyonlarda primerler kullanılarak tek zincirli DNA sentezlemek için asimetrik PCR, doku kesitlerindeki hücre içi amplifikasyonu görüntülemek için in-situ PCR, random primerler kullanılarak rastgele DNA segmentlerini amplifiye etmek ve popülasyon analizi için RAPD, ELISA ve PCR yöntemleri kombine edilerek düşük konsantrasyondaki amplikonların saptanması için immüno-PCR, amplifikasyonun gerçek zamanlı floresan sinyaller ile takip edilmesi ve kantitasyon için real-time PCR, mutlak kantitatif amplifikasyon için dijital PCR, uzun hedef DNA bölgelerinin amplifikasyonu için long-range PCR, RNA’dan ters transkriptaz enzimi ile cDNA sentezlenerek hedef amplifikasyonu sağlamak için de reverse transkripsiyon PCR yöntemi kullanılmaktadır. Tarih boyunca hızlı bir gelişim gösteren PCR modifikasyonları hakkında bilgi sahibi olmak, yapılacak analizlere göre uygun yöntemin seçilerek reaksiyonun sensitivite ve spesifitesini ve elde edilen ürünlerin kalitesi ve miktarını arttırmaya ve bu sayede çalışmaların başarıyla sonuçlanmasına katkıda bulunacak, teknolojik gelişmelerle beraber keşfedilecek yeni yöntemler için ise ufuk açıcı nitelikte olacaktır.
Abstract
In this study, it is aimed to provide an up-to-date overview of different types and application areas of polymerase chain reaction (PCR) developed with technological advances. PCR has accelerated scientific studies with its use in medical research and molecular biology. PCR based methods are used in many fields such as diagnosis of infectious diseases, microorganism typing, gene expression analysis, epidemiology and taxonomy fields, oncological studies, DNA cloning, analysis of point mutations, insertion of transposon elements, polymorphism studies, population typing, phylogenetic analysis, drug level analysis, and autoantibody detection. Multiplex PCR is used for simultaneous amplification of multiple targets using multiple primer pairs, consensus PCR is used for amplification of common (conserved) gene regions of genetically related microorganisms, rep-PCR is used for amplification of repetitive fingerprint DNA sequences in microbial genomes, nested PCR is used to reduce non-specific primer binding and increase sensitivity, hot start PCR is used to reduce the presence of non-specific products and primer dimers, anchored PCR is used to enable amplification of unknown gene regions using non-specific anchor primers, ligation mediated and homopolymer PCR is used for amplification of a DNA segment with a single known primer binding site, touch-down and touch-up PCR is used to prevent mismatches by regulating annealing temperature, autosticky PCR is used for amplification of DNA fragments for gene cloning using abasic primers, methylation specific PCR is used to determine the methylation patterns of cytosine residues, inverse PCR is used for sequence analysis of unknown flanking DNA regions, asymmetric PCR is used to synthesize single-stranded DNA using primers of different concentrations, in-situ PCR is used to visualize intracellular amplification in tissue sections, RAPD is used for amplifying random DNA segments using random primers and for population analysis, immuno-PCR is used for detection of low concentration amplicons by combining ELISA and PCR methods, real-time PCR is used for quantitation and monitoring of amplification with real time fluorescent signals, digital PCR is used for absolute quantitative amplification, long-range PCR for amplification of long target DNA regions, and reverse transcription PCR is used to provide amplification by synthesizing cDNA from RNA with reverse transcriptase enzyme. PCR modifications have developed rapidly throughout history. Having knowledge about these modifications will be an eye-opener for new methods to be discovered with technological developments, will contribute to selection of appropriate methods, and will increase the sensitivity and specificity of the reactions.
Notes
Files
jmvi.2022.60.pdf
Files
(1.3 MB)
Name | Size | Download all |
---|---|---|
md5:b386e71564746e2c6f6b58ec1cd4eb1e
|
1.3 MB | Preview Download |
Additional details
References
- 1. Corley RB. Recombinant DNA Techniques: Cloning and Manipulation of DNA. In: Corley RB (ed), A Guide to Methods in the Biomedical Sciences. 2005, Springer Science Inc, Boston, USA. pp:39-67.
- 2. Ghannam MG, Varacallo M. Biochemistry, Polymerase Chain Reaction. In: StatPearls. 2022, StatPearls Publishing. NBK535453
- 3. Sachse K. Specificity and Performance of Diagnostic PCR Assays. In: Sachse K, Frey J (eds), PCR Detection of Microbial Pathogens: Methods and Protocols. 2003, Humana Press Inc, Totowa, NJ. pp:3-29.
- 4. Markoulatos P, Siafakas N, Moncany M. Multiplex polymerase chain reaction: a practical approach. J Clin Lab Anal 2002; 16(1): 47-51.
- 5. Şahiner F, Kubar A, Yapar M, Şener K, Dede M, Gümral R. Detection of major HPVs by a new multiplex real-time PCR assay using type-specific primers. J Microbiol Methods 2014; 97: 44-50.
- 6. Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH. Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 1997; 23(3): 504-11.
- 7. Sahiner F. Current problems and recent advances in the molecular diagnosis of genital human papillomavirus infections. Mikrobiyol Bul 2014; 48(4): 689-706.
- 8. Visseaux B, Collin G, Ichou H, Charpentier C, Bendhafer S, Dumitrescu M, et al. Usefulness of multiplex PCR methods and respiratory viruses' distribution in children below 15 years old according to age, seasons and clinical units in France: A 3 years retrospective study. PLoS One 2017; 12(2): e0172809.
- 9. Collins ME, Popowitch EB, Miller MB. Evaluation of a Novel Multiplex PCR Panel Compared to Quantitative Bacterial Culture for Diagnosis of Lower Respiratory Tract Infections. J Clin Microbiol 2020; 58(5): e02013-19.
- 10. Kriesel JD, Bhatia AS, Barrus C, Vaughn M, Gardner J, Crisp RJ. Multiplex PCR testing for nine different sexually transmitted infections. Int J STD AIDS 2016; 27(14): 1275-82.
- 11. Zhang H, Morrison S, Tang YW. Multiplex polymerase chain reaction tests for detection of pathogens associated with gastroenteritis. Clin Lab Med 2015; 35(2): 461-86.
- 12. López-Amor L, García-Prieto E, Fernández-Suárez J, Escudero D, Vázquez F, Fernández J. Evaluation of a commercial multiplex PCR for diagnosis of central nervous system (CNS) nosocomial infections. J Microbiol Methods 2020; 171: 105865.
- 13. Tao Y, Paden CR, Queena K, Zhanga J, Tyagib E, Tong S. Broad-Range Virus Detection and Discovery Using Microfluidic PCR Coupled with High-throughput Sequencing. BioRxiv 2020.06.10.145052.
- 14. Van Burik JA, Myerson D, Schreckhise RW, Bowden RA. Panfungal PCR assay for detection of fungal infection in human blood specimens. J Clin Microbiol 1998; 36(5): 1169-75.
- 15. Vina-Rodriguez A, Sachse K, Ziegler U, Chaintoutis SC, Keller M, Groschup MH, et al. A Novel Pan-Flavivirus Detection and Identification Assay Based on RT-qPCR and Microarray. Biomed Res Int 2017; 2017: 4248756.
- 16. Linhart C, Shamir R. The degenerate primer design problem: theory and applications. J Comput Biol 2005; 12(4): 431-56.
- 17. Tkadlec J, Peckova M, Sramkova L, Rohn V, Jahoda D, Raszka D, et al. The use of broad-range bacterial PCR in the diagnosis of infectious diseases: a prospective cohort study. Clin Microbiol Infect 2019; 25(6): 747-52.
- 18. Marbjerg LH, Holzknecht BJ, Dargis R, Dessau RB, Nielsen XC, Christensen JJ. Commercial bacterial and fungal broad-range PCR (Micro-Dx™) used on culture-negative specimens from normally sterile sites: diagnostic value and implications for antimicrobial treatment. Diagn Microbiol Infect Dis 2020; 97(2): 115028.
- 19. Sahiner F, Gümral R, Sener K, Yiğit N, Dede M, Yapar M, et al. Investigation of HPV-DNA in cervical smear samples by two different methods: MY09/11 consensus PCR and type-specific real-time PCR. Mikrobiyol Bul 2012; 46(4): 624-36.
- 20. Ugorski M, Chmielewski R. REP and ERIC repetitive DNA sequences in bacteria--diagnostic significance. Postepy Hig Med Dosw 2000; 54(1): 3-15.
- 21. Spigaglia P, Mastrantonio P. Evaluation of repetitive element sequence-based PCR as a molecular typing method for Clostridium difficile. J Clin Microbiol 2003; 41(6): 2454-7.
- 22. Köstereli S, Onuk EE. Yersinia ruckeri İzolatlarının Genotiplendirilmesinde PCR Tabanlı DNA Fingerprinting Tekniklerinin Karşılaştırmalı Analizi. Acta Aquat Turc 2019; 15(3): 262-71.
- 23. Ranjbar R, Tabatabaee A, Behzadi P, Kheiri R. Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) Genotyping of Escherichia coli Strains Isolated from Different Animal Stool Specimens. Iran J Pathol 2017; 12(1): 25-34.
- 24. Green MR, Sambrook J. Nested Polymerase Chain Reaction (PCR). Cold Spring Harb Protoc 2019; 2019(2): pdb.prot095182 (175-8).
- 25. Deepachandi B, Weerasinghe S, Soysa P, Karunaweera N, Siriwardana Y. A highly sensitive modified nested PCR to enhance case detection in leishmaniasis. BMC Infect Dis 2019; 19(1): 623.
- 26. Sevindik E, Abacı ZT. Nested PCR ve Kullanım Alanları. Türk Bilimsel Derlemeler Dergisi 2013; 6(2): 22-6.
- 27. Marinho RC, Martins GR, Souza KC, Sousa ALM, Silva STC, Nobre JA, et al. Duplex nested-PCR for detection of small ruminant lentiviruses. Braz J Microbiol 2018; 49 Suppl 1(Suppl 1): 83-92.
- 28. Wang J, Cai K, Zhang R, He X, Shen X, Liu J, et al. Novel One-Step Single-Tube Nested Quantitative Real-Time PCR Assay for Highly Sensitive Detection of SARS-CoV-2. Anal Chem 2020; 92(13): 9399-404.
- 29. Ashraf MJ, Shamsizadeh F, Morovati H, Hejazinia S, Kord M, Ansari S, et al. Accompanying a semi-nested PCR assay to support histopathology findings of fungal keratitis in formalin-fixed paraffin-embedded corneal samples. J Clin Lab Anal 2022: e24764.
- 30. El-Gayar MH, Saleh SE, Mohamed AF, Aboulwafa MM, Hassouna NA, Allayeh AK. Isolation, Propagation and Genotyping of Human Rotaviruses Circulating among Children with Gastroenteritis in Two Egyptian University Hospitals. Biology (Basel) 2022; 11(10): 1413.
- 31. Moin-Vaziri V, Zare F, Seyyed Tabaei SJ, Saberi R, Hajjaran H. Successful Isolation of Leishmania RNA Virus (LRV) from Leishmania major in a Cutaneous Leishmaniasis Focus in Central Iran: An Update on Cases. Acta Parasitol 2022; 67(3): 1290-8.
- 32. Papadopoulou K, Falk TM, Metze D, Böer-Auer A. No evidence of Borrelia in cutaneous infiltrates of B-cell lymphomas with a highly sensitive, semi-nested real-time polymerase chain reaction targeting the 5S-23S intergenic spacer region. J Eur Acad Dermatol Venereol 2022; 36(6): 836-45.
- 33. Şahiner F. Nested PCR and semi-nested PCR (Figure 1, Molecular Biology). In: tibbiviroloji.com (http://tibbiviroloji.com/4/tr/molecular/sh/m.p1.htm), Türkiye. Available at: http://tibbiviroloji.com/4/tr/molecular/tr.1.nested.pcr.png [Published; December 1, 2022]
- 34. Loh E. Anchored PCR: Amplification with single-sided specificity. Methods 1991; 2(1): 11-9.
- 35. Ferradini L, Roman-Roman S, Azogui O, Genevée C, Viel S, Hercend T, et al. The use of anchored polymerase chain reaction for the study of large numbers of human T-cell receptor transcripts. Mol Immunol 1993; 30(13): 1143-50.
- 36. Beg S, Bareja R, Ohara K, Eng KW, Wilkes DC, Pisapia DJ, et al. Integration of whole-exome and anchored PCR-based next generation sequencing significantly increases detection of actionable alterations in precision oncology. Transl Oncol 2021; 14(1): 100944.
- 37. Krawczyk B, Kur J, Stojowska-Swędrzyńska K, Śpibida M. Principles and applications of Ligation Mediated PCR methods for DNA-based typing of microbial organisms. Acta Biochim Pol 2016; 63(1): 39-52.
- 38. Dai SM, Chen HH, Chang C, Riggs AD, Flanagan SD. Ligation-mediated PCR for quantitative in vivo footprinting. Nat Biotechnol 2000; 18(10): 1108-11.
- 39. Yu D, Zhou T, Sun X, Sun Z, Sheng X, Tan Y, et al. Cyclic Digestion and Ligation-Mediated PCR Used for Flanking Sequence Walking. Sci Rep 2020; 10(1): 3434.
- 40. Dawes JC, Webster P, Iadarola B, Garcia-Diaz C, Dore M, Bolt BJ, et al. LUMI-PCR: an Illumina platform ligation-mediated PCR protocol for integration site cloning, provides molecular quantitation of integration sites. Mob DNA 2020; 11: 7.
- 41. Lazinski DW, Camilli A. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction. Biotechniques 2013; 54(1): 25-34.
- 42. Ochman H, Ajioka JW, Garza D, Hartl DL. Inverse polymerase chain reaction. Biotechnology (N Y) 1990; 8(8): 759-60.
- 43. Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics 1988; 120(3): 621-3.
- 44. Clark DP, Pazdernik NJ. DNA Synthesis In Vivo and In Vitro (Chapter 4). In: Clark DP, Pazdernik NJ (eds), Biotechnology (2nd edition). 2015, Academic Cell-Elsevier, USA. pp:97-130.
- 45. Tansirichaiya S, Winje E, Wigand J, Al-Haroni M. Inverse PCR-based detection reveal novel mobile genetic elements and their associated genes in the human oral metagenome. BMC Oral Health 2022; 22(1): 210.
- 46. Silva D, Santos G, Barroca M, Collins T. Inverse PCR for Point Mutation Introduction. Methods Mol Biol 2017; 1620: 87-100.
- 47. Şahiner F. Inverse PCR (Figure 2, Molecular Biology). In: tibbiviroloji.com (http://tibbiviroloji.com/4/tr/molecular/sh/m.p1.htm), Türkiye. Available at: http://tibbiviroloji.com/4/tr/molecular/tr.2.invers.pcr.png [Published; December 1, 2022]
- 48. Gál J, Kálmán M. Autosticky PCR. In: Chen BY, Janes HW (eds), PCR Cloning Protocols. Methods in Molecular Biology™, vol 192 (2nd edition). 2002, Humana Press, Totowa, New Jersey, USA. pp:141-51.
- 49. Gál J, Schnell R, Szekeres S, Kálmán M. Directional cloning of native PCR products with preformed sticky ends (autosticky PCR). Mol Gen Genet 1999; 260(6): 569-73.
- 50. Yamashita K, Hosoda K, Nishizawa N, Katoh H, Watanabe M. Epigenetic biomarkers of promoter DNA methylation in the new era of cancer treatment. Cancer Sci 2018; 109(12): 3695-706.
- 51. Nehdi A, Samman N, Aguilar-Sánchez V, Farah A, Yurdusev E, Boudjelal M, et al. Novel Strategies to Optimize the Amplification of Single-Stranded DNA. Front Bioeng Biotechnol 2020; 8: 401.
- 52. Sanchez JA, Pierce KE, Rice JE, Wangh LJ. Linear-after-the-exponential (LATE)-PCR: an advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proc Natl Acad Sci U S A 2004; 101(7): 1933-8.
- 53. Heiat M, Ranjbar R, Latifi AM, Rasaee MJ, Farnoosh G. Essential strategies to optimize asymmetric PCR conditions as a reliable method to generate large amount of ssDNA aptamers. Biotechnol Appl Biochem 2017; 64(4): 541-8.
- 54. Şahiner F. Asymmetric PCR (Figure 3, Molecular Biology). In: tibbiviroloji.com (http://tibbiviroloji.com/4/tr/molecular/sh/m.p1.htm), Türkiye. Available at: http://tibbiviroloji.com/4/tr/molecular/tr.3.asimetrik.pcr.png [Published; December 1, 2022]
- 55. Valentini A, Timperio AM, Cappuccio I, Zolla L. Random amplified polymorphic DNA (RAPD) interpretation requires a sensitive method for the detection of amplified DNA. Electrophoresis 1996; 17(10): 1553-4.
- 56. Banić M, Butorac K, Čuljak N, Leboš Pavunc A, Novak J, Bellich B, et al. The Human Milk Microbiota Produces Potential Therapeutic Biomolecules and Shapes the Intestinal Microbiota of Infants. Int J Mol Sci 2022; 23(22): 14382.
- 57. Duarte ER, Hamdan JS. RAPD differentiation of Malassezia spp. from cattle, dogs and humans. Mycoses 2010; 53(1): 48-56.
- 58. Khandka DK, Tuna M, Tal M, Nejidat A, Golan-Goldhirsh A. Variability in the pattern of random amplified polymorphic DNA. Electrophoresis 1997; 18(15): 2852-6.
- 59. Khare P, Sahu U. Recent advances in the diagnostic methods of Leishmaniasis (Chapter 3). In: Samant M, Pandey SC (eds), Pathogenesis, Treatment and Prevention of Leishmaniasis. 2021, Academic Press, USA. pp: 45-62.
- 60. Öz Aydın S. RAPD (Rastgele Arttırılmış Polimofik DNA) Belirleyicileri ve Bitki Sistematiği. Journal of Science and Technology of Dumlupınar University 2004; 6: 113-30.
- 61. Şahiner F. Random amplified polymorphic DNA (RAPD) (Figure 4, Molecular Biology). In: tibbiviroloji.com (http://tibbiviroloji.com/4/tr/molecular/sh/m.p1.htm), Türkiye. Available at: http://tibbiviroloji.com/4/tr/molecular/tr.4.rapd.pcr.png [Published; December 1, 2022]
- 62. Ryazantsev DY, Voronina DV, Zavriev SK. Immuno-PCR: Achievements and Perspectives. Biochemistry (Mosc) 2016; 81(13): 1754-70.
- 63. Sano T, Smith CL, Cantor CR. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 1992; 258(5079): 120-2.
- 64. Sue MJ, Yeap SK, Omar AR, Tan SW. Application of PCR-ELISA in molecular diagnosis. Biomed Res Int 2014; 2014: 653014.
- 65. Kanagal-Shamanna R. Digital PCR: Principles and Applications. Methods Mol Biol 2016; 1392: 43-50.
- 66. Lambrescu I, Popa A, Manole E, Ceafalan LC, Gaina G. Application of Droplet Digital PCR Technology in Muscular Dystrophies Research. Int J Mol Sci 2022; 23(9): 4802.
- 67. Şahiner F. Digital PCR (Figure 5, Molecular Biology). In: tibbiviroloji.com (http://tibbiviroloji.com/4/tr/molecular/sh/m.p1.htm), Türkiye. Available at: http://tibbiviroloji.com/4/tr/molecular/tr.5.dijital.pcr.png [Published; December 1, 2022]
- 68. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A 1999; 96(16): 9236-41.
- 69. Galimberti S, Balducci S, Guerrini F, Del Re M, Cacciola R. Digital Droplet PCR in Hematologic Malignancies: A New Useful Molecular Tool. Diagnostics (Basel) 2022; 12(6): 1305.
- 70. Shekhawat DS, Sharma C, Singh K, Singh P, Bhardwaj A, Patwa P. Critical appraisal of droplet digital polymerase chain reaction application for noninvasive prenatal testing. Congenit Anom (Kyoto) 2022; 62(5): 188-97.
- 71. Bagasra O. Protocols for the in situ PCR-amplification and detection of mRNA and DNA sequences. Nat Protoc 2007; 2(11): 2782-95.
- 72. Long AA, Komminoth P. In situ PCR. Methods Mol Biol 1997; 71: 141-61.
- 73. Hussein EA, Hair-Bejo M, Omar AR, Arshad SS, Hani H, Balakrishnan KN, et al. Velogenic newcastle disease virus tissue tropism and pathogenesis of infection in chickens by application of in situ PCR, immunoperoxase staining and HE staining. Microb Pathog 2019; 129: 213-23.
- 74. Mabruk MJ. In situ hybridization: detecting viral nucleic acid in formalin-fixed, paraffin-embedded tissue samples. Expert Rev Mol Diagn 2004; 4(5): 653-61.
- 75. Kralik P, Ricchi M. A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything. Front Microbiol 2017; 8: 108.
- 76. McChlery SM, Clarke SC. The use of hydrolysis and hairpin probes in real-time PCR. Mol Biotechnol 2003; 25(3): 267-74.
- 77. Eischeid AC. SYTO dyes and EvaGreen outperform SYBR Green in real-time PCR. BMC Res Notes 2011; 4: 263.
- 78. Gerasimova YV, Kolpashchikov DM. Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chem Soc Rev 2014; 43(17): 6405-38.
- 79. Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 2005; 5(2): 209-19.
- 80. Şahiner F. Fluorescent signal systems in real-time PCR (Figure 6, Molecular Biology). In: tibbiviroloji.com (http://tibbiviroloji.com/4/tr/molecular/sh/m.p1.htm), Türkiye. Available at: http://tibbiviroloji.com/4/tr/molecular/tr.6.real.time.pcr.png [Published; December 1, 2022]
- 81. Sahoo S, Mandal S, Das P, Bhattacharya S, Chandy M. An analysis of the standard curve parameters of cytomegalovirus, BK virus and hepatitis B virus quantitative polymerase chain reaction from a clinical virology laboratory in eastern India. Indian J Med Microbiol 2022; 40(1): 81-5.
- 82. Lübeck PS, Hoorfar J. PCR Technology and Applications to Zoonotic Food-Borne Bacterial Pathogens. In: Sachse K, Frey J (eds), PCR Detection of Microbial Pathogens: Methods and Protocols. 2003, Humana Press, Totowa, New Jersey, USA. pp:65-86.
- 83. Kelleher KL, Leck KJ, Hendry IA, Matthaei KI. A one-step quantitative reverse transcription polymerase chain reaction procedure. Brain Res Brain Res Protoc 2001; 6(3): 100-7.
- 84. Haddad F, Baldwin KM. Reverse transcription of the ribonucleic acid: the first step in RT-PCR assay. Methods Mol Biol 2010; 630: 261-70.
- 85. Şahiner F. Reverse transcription PCR (Figure 7, Molecular Biology). In: tibbiviroloji.com (http://tibbiviroloji.com/4/tr/molecular/sh/m.p1.htm), Türkiye. Available at: http://tibbiviroloji.com/4/tr/molecular/tr.7.revers.transkripsiyon.pcr.png [Published; December 1, 2022]
- 86. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 1991; 19(14): 4008.
- 87. Rychlik W, Spencer WJ, Rhoads RE. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res 1990; 18(21): 6409-12. Erratum in: Nucleic Acids Res 1991; 19(3): 698.
- 88. Phung TTB, Chu SV, Vu ST, Pham HT, Nguyen HM, Nguyen HD, et al. COLD-PCR Method for Early Detection of Antiviral Drug-Resistance Mutations in Treatment-Naive Children with Chronic Hepatitis B. Diagnostics (Basel) 2020; 10(7): 491.
- 89. Li J, Wang L, Mamon H, Kulke MH, Berbeco R, Makrigiorgos GM. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med 2008; 14(5): 579-84.
- 90. Chua EW, Maggo S, Kennedy MA. Long Fragment Polymerase Chain Reaction. Methods Mol Biol 2017; 1620: 65-74.
- 91. Jia H, Guo Y, Zhao W, Wang K. Long-range PCR in next-generation sequencing: comparison of six enzymes and evaluation on the MiSeq sequencer. Sci Rep 2014; 4: 5737.
- 92. Tekin K, Aygar İS, Hoşbul T. Basic Principles of Polymerase Chain Reaction Technology. J Mol Virol Immunol 2020; 1(1): 57-66.