Published December 1, 2022 | Version v1
Journal article Open

Survivors and colonizers: Contrasting biogeographic histories reconciled in the Antarctic freshwater copepod Boeckella poppei

  • 1. Institute of Ecology and Biodiversity (IEB), Ñuñoa, Santiago, Chile & Cape Horn International Center (CHIC), Puerto Williams, Chile & Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile & British Antarctic Survey (BAS), Natural Environment Research Council, Cambridge, United Kingdom
  • 2. British Antarctic Survey (BAS), Natural Environment Research Council, Cambridge, United Kingdom & Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
  • 3. Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile & Departamento de Zoología, Universidad de ConcepciÓn, Concepción, Chile
  • 4. Institute of Ecology and Biodiversity (IEB), Ñuñoa, Santiago, Chile & Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile & Facultad de Ciencias, Centro FONDAP IDEAL, Instituto de Ciencias Marinas y LimnolÓgicas (ICML), Universidad Austral de Chile, Valdivia, Chile
  • 5. Cape Horn International Center (CHIC), Puerto Williams, Chile & Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile & Laboratorio de Estudios Dulceacuícolas Wankara, Programa de ConservaciÓn Biocultural Subantártica, Universidad de Magallanes, Punta Arenas, Chile
  • 6. Cape Horn International Center (CHIC), Puerto Williams, Chile & Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile & British Antarctic Survey (BAS), Natural Environment Research Council, Cambridge, United Kingdom & Department of Zoology, University of Johannesburg, Johannesburg, South Africa
  • 7. British Antarctic Survey (BAS), Natural Environment Research Council, Cambridge, United Kingdom
  • 8. Institute of Ecology and Biodiversity (IEB), Ñuñoa, Santiago, Chile & Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile

Description

Maturana, Claudia S., Biersma, Elisabeth M., Díaz, Angie, González-Wevar, Claudio, Contador, Tamara, Convey, Peter, Jackson, Jennifer A., Poulin, Elie (2022): Survivors and colonizers: Contrasting biogeographic histories reconciled in the Antarctic freshwater copepod Boeckella poppei. Frontiers in Ecology and Evolution (1012852) 10: 1-15, DOI: 10.3389/fevo.2022.1012852

Files

source.pdf

Files (7.8 MB)

Name Size Download all
md5:1eef7b9fa1111f60cb5098613dafb735
7.8 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFEFFF9FA1111F60CB509861FFAFB735

References

  • Allegrucci, G., Carchini, G., Convey, P., and Sbordoni, V. (2012). Evolutionary geographic relationships among orthocladine chironomid midges from marine Antarctic and sub-Antarctic islands.Biol. J. Linn. Soc. 106, 258-274.doi:10.1111/J. 1095-8312.2012.01864.X
  • Almada, P., Allende, L., Tell, G., and Izaguirre, I. (2004). Experimental evidence of the grazing impact of Boeckella poppei on phytoplankton in a maritime Antarctic lake. Polar Biol.28, 39-46. doi:10.1007/S00300-004-0644-Y
  • Avise, J. C., and Ayala, F. J.(2017).Comparative Phylogeography. Washington,DC: The National Academies Press.
  • Baird, H. P., Shin, S., Oberprieler, R. G., Hulle, M., Vernon, P., Moon, K. L., et al. (2021). Fifty million years of beetle evolution along the Antarctic Polar Front. Proc. Natl. Acad. Sci. U. S. A. 118, 1-10. doi: 10.1073/Pnas. 2017384118
  • Bandelt, H. J., Forster, P., and Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48. doi: 10.1093/ Oxfordjournals.Molbev.A026036
  • Bayly, I. A. E., Gibson, J. A. E., Wagner, B., and Swadling, K. M.(2003).Taxonomy, ecology and zoogeography of two east Antarctic freshwater calanoid copepod species:Boeckella poppei and Gladioferens antarcticus. Antarct. Sci. 15, 439-448.doi: 10.1017/S0954102003001548
  • Beaumont, M. A., Zhang, W., and Balding, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics 162, 2025-2035. doi: 10.1093/ genetics/162.4.2025
  • Benjamini, Y., Krieger, A. M., and Yekutieli, D. (2005). Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93, 491-507.doi: 10.1093/ biomet/93.3.491
  • Bennet, K. D., Tzedakis, P. C., and Willis, K. J.(1991). Quaternary refugia of north European trees. J. Biogeogr. 18, 103-115.doi: 10.2307/2845248
  • Biersma, E. M., Convey, P., Wyber, R., Robinson, S. A., Dowton, M., van de Vijver, B., et al. (2020a). Latitudinal biogeographic structuring in the globally distributed moss Ceratodon purpureus. Front. Plant Sci. 11:502359. doi: 10.3389/ Fpls.2020.502359
  • Biersma, E. M., Jackson, J. A., Bracegirdle, T. J., Griffiths, H., Linse, K., and Convey, P. (2018a). Low genetic variation between South American and Antarctic populations of the bank-forming moss Chorisodontium aciphyllum (Dicranaceae). Polar Biol.41, 599-610.doi: 10.1007/S00300-017-2221-1
  • Biersma, E. M., Jackson, J. A., Stech, M., Griffiths, H., Linse, K., and Convey, P. (2018b). Molecular data duggest long-term in situ Antarctic persistence within Antarctica's most speciose plant genus, Schistidium. Front. Ecol. Evol. 6:77. doi: 10.3389/Fevo.2018.00077
  • Biersma, E. M., Torres-Diaz, C., Molina-Montenegro, M. A., Newsham, K. K., Vidal, M. A., Collado, G. A., et al. (2020b). Multiple late-Pleistocene colonisation events of the Antarctic pearlwort Colobanthus quitensis (Caryophyllaceae) reveal the recent arrival of native Antarctic vascular flora. J. Biogeogr. 47, 1663-1673. doi: 10.1111/Jbi.13843
  • Billard, E., Reyes, J., Mansilla,A., Faugeron, S., and Guillemin, M.-L.(2015).Deep genetic divergence between austral populations of the red alga Gigartina skottsbergii reveals a cryptic species endemic to the Antarctic continent. Polar Biol. 38, 2021-2034.doi: 10.1007/S00300-015-1762-4
  • Bissett,A., Gibson, J. A. E., Jarman, S. N., Swadling, K. M., and Cromer, L.(2005). Isolation, amplification, and identification of ancient copepod DNA from lake sediments. Limnology Oceanography-Methods 3, 533-542. doi: 10.4319/ Lom.2005.3.533
  • Bohuslavova, O., Macek, P., Redcenko, O., Laska, K., Nedbalova, L., and Elster, J. (2018). Dispersal of lichens along a successional gradient after deglaciation of volcanic mesas on northern James Ross Island, Antarctic Peninsula. Polar Biol.41, 2221-2232.doi: 10.1007/S00300-018-2357-7
  • Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C. H., Xie, D., et al.(2014). Beast 2: a software platform for Bayesian evolutionary analysis. PloS Comp. Biol. 10:E1003537.doi: 10.1371/Journal.Pcbi.1003537
  • Brendonck, L., and De Meester, L. (2003). Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment.Hydrobiologia 491,65-84.doi: 10.1023/A:1024454905119
  • Brooks, S. T., Jabour, J., Van Den Hoff, J., and Bergstrom, D. M. (2019). Our footprint on Antarctica competes with nature for rare ice-free land. Nature Sustainability 2, 185-190.doi: 10.1038/S41893-019-0237-Y
  • Brunetti, C., Siepel, H., Convey, P., Fanciulli, P. P., Nardi, F., and Carapelli, A. (2021). Overlooked species diversity and distribution in the Antarctic mite genus Stereotydeus.Diversity 13, 1-26. doi:10.3390/D13100506
  • Burridge, C. P., Craw, D., Fletcher, D., and Waters, J. M.(2008). Geological dates and molecular rates: fish DNA sheds light on time dependency.Mol. Biol.Evol.25, 624-633.doi: 10.1093/Molbev/Msm271
  • Burton-Johnson, A., Black, M., Fretwell, P. T., and Kaluza-Gilbert, J. (2016). An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10, 1665-1677. doi: 10.5194/ tc-10-1665-2016
  • Cabrera, V. M.(2021).Human molecular evolutionary rate, time dependency and transient polymorphism effects viewed through ancient and modern mitochondrial DNA genomes. Sci. Rep. 11:5036.doi: 10.1038/S41598-021-84583-1
  • Carapelli, A., Convey, P., Frati, F., Spinsanti, G., and Fanciulli, P. P. (2017). Population genetics of three sympatric springtail species (Hexapoda: Collembola) from the South Shetland Islands: evidence for a common biogeographic pattern. Biol. J. Linn. Soc. 120, 788-803. doi: 10.1093/Biolinnean/Blw004
  • Carapelli, A., Cucini, C., Fanciulli, P. P., Frati, F., Convey, P., and Nardi, F.(2020). Molecular comparison among Three Antarctic Endemic Springtail Species and Description of the Mitochondrial Genome of Friesea Gretae (Hexapoda, Collembola). Diversity 12, 1-13. doi: 10.3390/D12120450
  • Chown, S. L., and Convey, P.(2016).Antarctic Entomology. Annu. Rev. Entomol. 61, 119-137. doi:10.1146/Annurev-Ento-010715-023537
  • Clapperton,C.M.(1990).Quaternary glaciation in the Southern Ocean and Antarctic Peninsula area. Quat.Sci. Rev. 9,229-252.doi:10.1016/0277-3791(90)90020-B
  • Clapperton, C. M.(1993).Nature of environmental changes in South America at the Last Glacial Maximum.Palaeogeogr., Palaeoclimatol.Palaeoecol. 101, 189-208. doi: 10.1016/0031-0182(93)90012-8
  • Convey, P. (2017). "Antarctic Ecosystems" in Reference Module in Life Science (Cambridge: Elsevier),179-188.
  • Convey, P., Biersma, E. M., Casanova-Katny, A., and Maturana, C. (2020). "Refuges of Antarctic diversity" in Past Antarctica. eds. M. Oliva and J. Ruiz-Fernandez (Elsevier), 181-200.
  • Convey, P., Frenot, Y., Gremmen, N., and Bergstrom, D. M. (2006). "Biological invasions" in Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator. eds. D. M. Bergstrom, P. Convey and A. H. L. Huiskes (Dordhrecht:Springer), 193-220.
  • Convey, P., and Smith, R. I. L. (2006). Geothermal bryophyte habitats in the South Sandwich Islands, maritime Antarctic. J. Veg. Sci. 17, 529-538. doi: 10.1111/j.1654-1103.2006.tb02474.x
  • Copilas-Ciocianu, D., Sidorov, D., and Gontcharov, A. (2019). Adrift across tectonic plates: molecular phylogenetics supports the ancient Laurasian origin of old limnic crangonyctid amphipods. Org. Diversity Evol.19, 191-207.doi:10.1007/ S13127-019-00401-7
  • Cornuet, J. M., Santos, F., Beaumont, M. A., Robert, C. P., Marin, J. M., Balding, D. J., et al. (2008). Inferring population history with DIY ABC: a userfriendly approach to approximate Bayesian computation. Bioinformatics 24, 2713-2719. doi:10.1093/Bioinformatics/Btn514
  • Crisp, M. D., Trewick, S. A., and Cook, L. G. (2011). Hypothesis testing in biogeography.Trends Ecol.Evol.26, 66-72. doi:10.1016/J.Tree.2010.11.005
  • Cromer, L., Gibson, J.A.E., Swadling, K.M., and Hodgson,D.A.(2006).Evidence for a lacustrine faunal refuge in the Larsemann Hills,East Antarctica,during the Last Glacial Maximum. J.Biogeogr.33, 1314-1323.doi:10.1111/J.1365-2699.2006.01490.X
  • Davies, B. J., Darvill, C. M., Lovell, H., Bendle, J. M., Dowdeswell, J. A., Fabel, D., et al. (2020).The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth-Sci. Rev. 204:103152.doi: 10.1016/J.Earscirev.2020.103152
  • De Meester, L., Gomez, A., Okamura, B., and Schwenk, K. (2002). The Monopolization Hypothesis and the dispersal-gene flow paradox in aquatic organism. Acta Oecol.23, 121-135.doi:10.1016/S1146-609X(02)01145-1
  • Diaz,A., Gerard, K., Gonzalez-Wevar, C., Maturana, C., Feral, J. P., David, B., et al. (2018). Genetic structure and demographic inference of the regular sea urchin Sterechinus neumayeri (Meissner,1900) in the Southern Ocean:The role of the last glaciation. PLoS One 13:E0197611.doi: 10.1371/Journal.Pone.0197611
  • Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 1-19. doi: 10.1186/ 1471-2105-5-113
  • Emerson, B. C., and Hickerson, M. J. (2015). Lack of support for the timedependent molecular evolution hypothesis. Mol. Ecol.24, 702-709. doi: 10.1111/ mec.13070
  • Excoffier, L., and Heckel, G. (2006). Computer programs for population genetics data analysis: a survival guide. Nat. Rev. Genet. 7, 745-758. doi:10.1038/Nrg1904
  • Fasanella, M., Premoli, A. C., Urdampilleta, J. D., Gonzalez, M. L., and Chiapella, J. O. (2017). How did a grass reach Antarctica? The Patagonian connection of Deschampsia antarctica (Poaceae). Botanical J. Linnean Society 185, 511-524.doi: 10.1093/botlinnean/box070
  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol.Evol.17, 368-376. doi:10.1007/BF01734359
  • Figuerola, J., and Green,A. J.(2002).Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwat. Biol. 47, 483-494. doi: 10.1046/j.1365-2427.2002.00829.x
  • Fountain, A.G., Tranter, M., Nylen, T. H., Lewis, K. J., and Mueller, D. R.(2004). Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica. J. Glaciol. 50, 35-45. doi: 10.3189/172756504781830312
  • Fraser, C. I., Terauds, A., Smellie, J., Convey, P., and Chown, S. L. (2014). Geothermal activity helps life survive glacial cycles. Proc. Natl. Acad. Sci. U. S. A. 111, 5634-5639.doi: 10.1073/Pnas.1321437111
  • Frenot, Y., Chown,S. L., Whinam, J., Selkirk, P. M., Convey, P., Skotnicki, M., et al. (2005).Biological invasions in the Antarctic: extent, impacts and implications.Biol. Rev. Camb. Philos. Soc. 80, 45-72.doi: 10.1017/S1464793104006542
  • Gersonde, R., Crosta, X., Abelmann, A., and Armand, L. (2005). Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum-a circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev. 24, 869-896. doi:10.1016/J.Quascirev.2004.07.015
  • Gibson, J. A. E., and Bayly, I. A. E. (2007). New insights into the origins of crustaceans of Antarctic lakes. Antarct. Sci. 19, 157-163.
  • Gibson, J. A., and Zale, R. (2006). Holocene development of the fauna of Lake Boeckella, northern Antarctic Peninsula. Holocene 16, 625-634. doi: 10.1191/0959683606hl959rp
  • Gomez, A., Carvalho, G., and Lunt, D. (2000). Phylogeography and regional endemism of a passively dispersing zooplankter: mtDNA variation of rotifer resting egg banks. Proc. Royal Soc. Lond. B 267, 2189-2197. doi: 10.1098/ rspb.2000.1268
  • Gonzalez-Wevar, C. A., David, B., and Poulin, E. (2011). Phylogeography and demographic inference in Nacella (Patinigera) concinna (Strebel, 1908) in the western Antarctic peninsula.Deep-Sea Res. II Top. Stud. Oceanogr. 58, 220-229.doi: 10.1016/J.Dsr2.2010.05.026
  • Greenslade, P.(1995). Collembola from the Scotia Arc and Antarctic peninsula including descriptions of two new species and notes on biogeography. Bulletin Entomologique de Pologne 64, 305-319.
  • Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel,O.(2010).New algorithms and methods to estimate maximum-likelihood phylogenies:assessing the performance of PhyML 3.0. Syst. Biol. 59, 307-321. doi: 10.1093/Sysbio/Syq010
  • Hassold, N. J. C., Rea, D. K., Van Der Pluijm, B. A., and Pares, J. M. (2009). A physical record of the Antarctic Circumpolar Current: Late Miocene to recent slowing of abyssal circulation. Palaeogeogr. Palaeoclimatol.Palaeoecol. 275, 28-36. doi:10.1016/J.Palaeo.2009.01.011
  • Hawes, T. C.(2009).Origins and dispersal of the Antarctic fairy shrimp. Antarct. Sci. 21, 477-482.doi: 10.1017/S095410200900203x
  • Hawes, T. C., Worland, M. R., Convey, P., and Bale, J. S.(2007).Aerial dispersal of springtails on the Antarctic Peninsula: implications for local distribution and demography. Antarct. Sci. 19, 3-10. doi: 10.1017/S0954102007000028
  • Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 183-195. doi:10.1098/ Rstb.2003.1388
  • Heywood, R. B. (1970). Ecology of the freshwater lakes of Signy Island, South Orkney Island: III Biology of the copepod Pseudoboeckella silvestri Daday (Calanoida, Centropagidae).Br. Antarct. Surv. Bull.23, 1-17.
  • Heywood, R. B. (1977). A limnological survey of the Ablation Point area, Alexander Island, Antartica. Philos. Trans. R. Society Series B 279, 39-54.
  • Ho, S. Y., Duchene, S., Molak, M., and Shapiro, B. (2015). Time-dependent estimates of molecular evolutionary rates: evidence and causes. Mol. Ecol. 24, 6007-6012.doi: 10.1111/mec.13450
  • Ho, S. Y., Lanfear, R., Bromham, L., Phillips, M. J., Soubrier, J., Rodrigo, A. G., et al.(2011).Time-dependent rates of molecular evolution.Mol.Ecol.20, 3087-3101. doi: 10.1111/J.1365-294x.2011.05178.X
  • Ho, S. Y., Saarma, U., Barnett, R., Haile, J., and Shapiro, B. (2008). The effect of inappropriate calibration: three case studies in molecular ecology. PLoS One 3:E1615.doi: 10.1371/Journal.Pone.0001615
  • Hodgson, D. A., Graham, A. G. C., Roberts, S. J., Bentley, M. J., Cofaigh, C. O., Verleyen, E., et al. (2014). Terrestrial and submarine evidence for the extent and timing of the Last Glacial Maximum and the onset of deglaciation on the maritime-Antarctic and sub-Antarctic islands. Quat. Sci. Rev. 100, 137-158. doi: 10.1016/j. quascirev.2013.12.001
  • Hodgson, D. A., Verleyen, E., Sabbe, K., Squier, A. H., Keely, B. J., Leng, M. J., et al. (2005). Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multi-proxy evidence from a Lake sediment Core. Quat. Res. 64, 83-99. doi: 10.1016/J.Yqres.2005. 04.002
  • Hughes, K. A., and Convey, P. (2010). The protection of Antarctic terrestrial ecosystems from inter-and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Glob. Environ. Chang. 20, 96-112. doi:10.1016/J.Gloenvcha.2009.09.005
  • Jiang, X., Zhao, S., Xu, Z., Wang, G., He, J., and Cai, M. (2012). Abundance and age of viable resting eggs of the calanoid copepod Boeckella poppei Mrazek in sediments: evidence of egg banks in two Antarctic maritime lakes. Polar Biol. 35, 1525-1531.doi: 10.1007/s00300-012-1192-5
  • Jones, V. J., Hodgson, D. A., and Lusty-Chepstow, A. (2000). Palaeolimnological evidence for marked Holocene environmental changes on Signy Island,Antarctica. Holocene 10, 43-60. doi:10.1191/095968300673046662
  • Kearse, M., Moir, R., Wilson,A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. doi: 10.1093/bioinformatics/bts199
  • Knowlton, N., and Weight, L. A.(1998). New dates and new rates for divergence across the Isthmus of Panama. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 2257-2263. doi:10.1098/rspb.1998.0568
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., and Battistuzzi, F. U.(2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol.Evol.35, 1547-1549. doi:10.1093/Molbev/Msy096
  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2017). Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol.34, 772-773. doi:10.1093/Molbev/Msw260
  • Laybourn-Parry, J., and Pearce, D. A. (2007). The biodiversity and ecology of Antarctic lakes: models for evolution.Philos. Trans. R. Soc. Lond., Ser. B: Biol. Sci. 362, 2273-2289.doi: 10.1098/Rstb.2006.1945
  • Lessios, H. A. (2008). The Great American Schism: divergence of marine organisms after the rise of Central American Isthmus. Annu. Rev. Ecol. Syst. 39, 63-91.doi:10.1146/annurev.ecolsys.38.091206.095815
  • Librado, P., and Rozas, J.(2009).DnaSP V5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452. doi: 10.1093/ bioinformatics/btp187
  • Lovell, H., Stokes, C. R., Bentley, M. J., and Benn, D. I. (2012). Evidence for rapid ice flow and proglacial lake evolution around the central strait of Magellan region, southernmost Patagonia. J. Quat. Sci. 27, 625-638.doi: 10.1002/Jqs.2555
  • Maggs, C.A., Castilho, R., Foltz, D., Henzler, C., Jolly, M. T., and Kelly, J.(2008). Evaluating signature of glacial refugia for north Atlantic benthic marine taxa. Ecology 89, S108-S122.doi: 10.1890/08-0257.1
  • Maly, E. J., and Bayly, I. A. E. (1991). Factors influencing biogeographic patterns of Australasian centropagid copepods.J.Biogeogr. 18, 455-461.doi:10.2307/2845486
  • Marcus, N. H. (1996).Ecological and evolutionary significance of resting eggs in marine copepods: past, present, and future studies.Hydrobiologia 320, 141-152.doi: 10.1007/BF00016815
  • Marko,P.B., Hoffman,J.I., Emme, S.A., Mcgovern,T.M., Keever,C.C.,and Cox,L.N. (2010).The 'Expansion-Contraction' model of Pleistocene biogeography:rocky shores suffer a sea change? Mol.Ecol.19, 146-169.doi:10.1111/J.1365-294x.2009.04417.X
  • Marshall, A. W., and Convey, P. (1997). Dispersal of moss propagules on Signy Island, Maritime Antarctic.Polar Biol.18, 376-383.doi: 10.1007/s003000050203
  • Maslen, N. R., and Convey, P. (2006). Nematode diversity and distribution in the southern maritime Antarctic-clues to history? Soil Biol. Biochem. 38, 3141-3151. doi: 10.1016/j.soilbio.2005.12.007
  • Maturana, C. S., Rosenfeld, S., Biersma, E. M., Segovia, N. I., Gonzalez-Wevar, C. A., Diaz, A., et al. (2021). Historical biogeography of the Gondwanan freshwater genus Boeckella (Crustacea): timing and modes of speciation in the Southern Hemisphere.Divers. Distrib.27, 2330-2343.doi:10.1111/ Ddi.13405
  • Maturana, C. S., Rosenfeld, S., Naretto, J., Convey, P., and Poulin, E. (2019). Distribution of the genus Boeckella (Crustacea, Copepoda, Calanoida, Centropagidae) at high latitudes in South America and the main Antarctic biogeographic regions.Zookeys 854, 1-15. doi: 10.3897/Zookeys.854.29614
  • Maturana, C. S., Segovia, N. I., Gonzalez-Wevar, C. A., Diaz, A., Rosenfeld, S., Poulin, E., et al. (2020). Evidence of strong small-scale population structure in the Antarctic freshwater copepod Boeckella poppei in lakes on Signy Island, South Orkney Islands. Limnol. Oceanogr 65, 2024-2040. doi:10.1002/lno.11435
  • Mcgaughran, A., Terauds, A., Convey, P., and Fraser, C. I. (2019). Genome-wide SNP data reveal improved evidence for Antarctic glacial refugia and dispersal of terrestrial invertebrates.Mol.Ecol. 28, 4941-4957.doi: 10.1111/Mec.15269
  • Mcgaughran, A., Torricelli, G., Carapelli, A., Frati, F., Stevens, M. I., Convey, P., et al. (2010).Contrasting phylogeographical patterns for springtails reflect different evolutionary histories between the Antarctic Peninsula and continental Antarctica. J. Biogeogr. 37, 103-119. doi:10.1111/J.1365-2699.2009.02178.X
  • Mortimer, E., Jansen Van Vuuren, B., Lee, J. E., Marshall, D. J., Convey, P., and Chown, S. L. (2011). Mite dispersal among the Southern Ocean Islands and Antarctica before the last glacial maximum. Proc. Biol. Sci. 278, 1247-1255. doi: 10.1098/Rspb.2010.1779
  • Munoz, J., Felicisimo, A. M., Cabezas, F., Burgaz, A. R., and Martinez, I. (2004). Wind as a long-distance dispersal vehicle in the Southern Hemisphere.Science 304, 1144-1147.doi: 10.1126/science.1095210
  • Ney, G., Frederick, K., and Schul, J.(2018).A post-pleistocene calibrated mutation rate from insect museum specimens.Plos Curr 10, 1-20. doi:10.1371/Currents.Tol. Aba557de56be881793261f7e1565cf35
  • Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J., and De Meester, L. (2013). Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 22, 5983-5999. doi:10.1111/Mec.12561
  • Ortega-Mayagoitia, E., Alcantara-Rodriguez, J. A., Urban-Olivares, J., Campos, J. E., and Ciros-Perez, J.(2022).Genomic signatures of adaptive divergence in lacustrine copepods. Freshwat.Biol.67, 1045-1062.doi: 10.1111/Fwb.13900
  • Perez-Alvarez, M., Kraft, S., Segovia, N. I., Olavarria, C., Nigenda-Morales, S., Urban, R. J., et al. (2021). Contrasting Phylogeographic Patterns Among Northern and Southern Hemisphere Fin Whale Populations With New Data From the Southern Pacific. Front. Mar. Sci. 8:630233. doi: 10.3389/Fmars. 2021.630233
  • Pertierra, L. R., Bartlett, J. C., Duffy, G. A., Vega, G. C., Hughes, K. A., Hayward, S. A. L., et al. (2019). Combining correlative and mechanistic niche models with human activity data to elucidate the invasive potential of a sub-Antarctic insect. J. Biogeogr. 47, 658-673.doi: 10.1111/Jbi.13780
  • Pisa, S., Biersma, E. M., Convey, P., Patino, J., Vanderpoorten, A., Werner, O., et al. (2014). The cosmopolitan moss Bryum argenteum in Antarctica: recent colonisation or in situ survival? Polar Biol. 37, 1469-1477. doi: 10.1007/ S00300-014-1537-3
  • Provan, J., and Bennett, K. D.(2008).Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564-571.doi: 10.1016/J.Tree.2008.06.010
  • Pugh, P. J. A., Dartnall, H. J. G., and Mcinnes, S. J. (2002). The non-marine Crustacea of Antarctica and the islands of the Southern Ocean: biodiversity and biogeography. J. Nat. Hist. 36, 1047-1103.doi: 10.1080/00222930110039602
  • Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J.(2014). Tracer v1.6. Available at: http://Beast.Bio.Ed.Ac.Uk/Tracer
  • Reed, K. A., Lee, S.G., Lee, J. H., Park, H., and Covi, J. A.(2021).The ultrastructure of resurrection: Post-diapause development in an Antarctic freshwater copepod. J. Struct. Biol.213:107705.doi: 10.1016/J.Jsb.2021.107705
  • Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574. doi: 10.1093/ Bioinformatics/Btg180
  • Russel, P.M., Brewer, B. J., Klaere,S., and Bouckaert, R. R.(2019).Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol. 68, 219-233.doi: 10.1093/Sysbio/Syy050
  • Sagredo, E. A., Moreno, P. I., Villa-Martinez, R., Kaplan, M. R., Kubik, P. W., and Stern, C. R. (2011). Fluctuations of the Ultima Esperanza ice lobe (52°S), Chilean Patagonia,during the last glacial maximum and termination 1. Geomorphology 125, 92-108. doi: 10.1016/J.Geomorph.2010.09.007
  • Scheihing, R., Cardenas, L., Nespolo, R. F., Krall, P., Walz, K., Kohshima, S., et al. (2009). Morphological and molecular analysis of centropagids from the high Andean plateau (Copepoda: Calanoidea). Hydrobiologia 637, 45-52. doi: 10.1007/ S10750-009-9983-6
  • Short, K. A., Sands, C. J., Mcinnes, S. J., Pisani, D., Stevens, M. I., and Convey, P. (2022). An ancient, Antarctic-specific species complex: large divergences between multiple Antarctic lineages of the tardigrade genus Mesobiotus. Mol. Phylogenet. Evol.170:107429.doi:10.1016/J.Ympev.2022.107429
  • Stephens, M., and Donnelly, P. (2003). A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162-1169.doi: 10.1086/379378
  • Stevens, M. I., and Hogg, I. D. (2003). Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria land. Antarctica. Mol. Ecol. 12, 2357-2369. doi: 10.1046/j.1365-294X.2003.01907.x
  • Taberlet, P., Fumagalli, L., Wust-Saucy, A.-G., and Cosson, J.-F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453-464. doi: 10.1046/J.1365-294x.1998.00289.X
  • Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene dataset with character set and codon information. Cladistics 27, 171-180. doi: 10.1111/ j.1096-0031.2010.00329.x
  • van Vuuren, B. J., Lee, J. E., Convey, P., and Chown, S. L. (2018). Conservation implications of spatial genetic structure in two species of oribatid mites from the Antarctic Peninsula and the Scotia Arc. Antarct. Sci. 30, 105-114. doi: 10.1017/ S0954102017000529
  • Vega, G.C., Convey, P., Hughes, K. A., and Olalla-Tarraga, M.A.(2019).Humans and wind, shaping Antarctic soil arthropod biodiversity. Insect Conserv. Diversity 13, 63-76.doi: 10.1111/Icad.12375
  • Ventura, M., Petrusek, A., Miro, A., Hamrova, E., Bunay, C., de Meester, L., et al. (2014). Local and regional founder effects in lake zooplankton persist after thousands of years despite high dispersal potential. Mol. Ecol. 23, 1014-1027. doi: 10.1111/Mec.12656
  • Verleyen, E., Van de Vijver, B., Tytgat, B., Pinseel, E., Hodgson, D. A., Kopalova, K., et al. (2021). Diatoms define a novel freshwater biogeography of the Antarctic. Ecography 44, 548-560.doi: 10.1111/Ecog.05374
  • Viana, D. S., Santamaria, L., and Figuerola, J. (2016). Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763-775. doi: 10.1016/J. Tree.2016.07.005
  • Vianna, J. A., Noll, D., Dantas, G. P. M., Petry, M. V., Barbosa, A., Gonzalez-Acuna, D., et al. (2017). Marked phylogeographic structure of Gentoo penguin reveals an ongoing diversification process along the Southern Ocean. Mol. Phylogenet. Evol. 107, 486-498. doi: 10.1016/J.Ympev.2016. 12.003
  • Wouw, M. V. D., Dijk, P. V., and Huiskes, A. H. L. (2008). Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia Antarctica Desv.).J.Biogeogr. 35, 365-376.doi: 10.1111/J.1365-2699.2007.01784.X
  • Wright, F. (1990). The "effective number of codons" used in a gene. Gene 87, 23-29.
  • Xu, S., Hebert, P. D., Kotov, A. A., and Cristescu, M. E. (2009). The noncosmopolitanism paradigm of freshwater zooplankton: insights from the global phylogeography of the predatory cladoceran Polyphemus pediculus (Linnaeus, 1761) (Crustacea, Onychopoda). Mol. Ecol. 18, 5161-5179. doi: 10.1111/J.1365-294x.2009.04422.X