Published November 4, 2008
| Version v1
Conference paper
Open
A Dynamic Electrowetting Simulation using the Level-Set Method
Creators
- 1. Institute for Bioprocessing and Analytical Measurement Techniques
- 2. Tallinn University of Technology
Description
A simulation of electrowetting driven droplet dynamics is performed using the level-set two-phase flow application mode of COMSOL Multiphysics for a sessile droplet and for a droplet in a microchannel. For the sessile drop, the response of the drop to a step voltage is studied. For the droplet in a microchannel, the contact angle at one edge of the drop is varied in order to show droplet actuation.
Notes
Files
Cahill et al. - A Dynamic Electrowetting Simulation using the Leve.pdf
Files
(1.6 MB)
Name | Size | Download all |
---|---|---|
md5:8196deef5cfa551fe0fceae89b6108b3
|
1.6 MB | Preview Download |
Additional details
Funding
References
- J. L. Jackel, S. Hackwood and G. Beni, Electrowetting optical switch, Applied Physics Letters, 40, 4-5 (1982)
- B. Berge and J. Peseux, Variable focal lens controlled by an external voltage: An application of electrowetting, The European Physical Journal E, 3, 159-163 (2000)
- R. A. Hayes and B. J. Feenstra, Video-speed electronic paper based on electrowetting, Nature, 425, 383-385 (2003)
- T. Roques-Carmes, R. A. Hayes, B. J. Feenstra and L. J. M. Schlangen, Liquid behavior inside a reflective display pixel based on electrowetting, Journal of Applied Physics, 95, 4389 (2004)
- M. G. Pollack, R. B. Fair and A. D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications, Applied Physics Letters, 77, 1725-1726 (2000)
- S. K. Cho, H. Moon and C. J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, Journal of Microelectromechanical Systems, 12, 70-80 (2003)
- P. Paik, V. K. Pamula and R. B. Fair, Rapid droplet mixers for digital microfluidic systems, Lab on a Chip, 3, 253-259 (2003)
- V. Srinivasan, V. K. Pamula and R. B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on a Chip, 4, 310-315 (2004)
- G. Lippmann, Relation entre les phénomènes électriques et capillaires, Annales de Chimie et de Physique, 5, 494 (1875)
- F. Mugele and J.-C. Baret, Electrowetting: from basics to applications, Journal of Physics: Condensed Matter, R705 (2005)
- B. S. Massey, Mechanics of Fluids, London: Chapman and Hall (1989)
- J.-L. Barrat and L. Bocquet, Large Slip Effect at a Nonwetting Fluid-Solid Interface, Physical Review Letters, 82, 4671-4674 (1999)
- Y. Zhu and S. Granick, Limits of the Hydrodynamic No-Slip Boundary Condition, Physical Review Letters, 88, 106102 (2002)
- E. Bonaccurso, H.-J. Butt and V. S. J. Craig, Surface Roughness and Hydrodynamic Boundary Slip of a Newtonian Fluid in a Completely Wetting System, Physical Review Letters, 90, 144501 (2003)
- Y. D. Shikhmurzaev, Moving contact lines in liquid/liquid/solid systems, Journal of Fluid Mechanics, 334, 211-249 (1997)
- E. B. Dussan V., The moving contact line: the slip boundary condition, Journal of Fluid Mechanics, 77, 665-684 (1976)
- Y. D. Shikhmurzaev, Dynamic contact angles and flow in vicinity of moving contact line, AIChE Journal, 42, 601-612 (1996)