Published November 21, 2022 | Version v1
Software Open

Discovering cellular programs of intrinsic and extrinsic drivers of metabolic traits using LipocyteProfiler

  • 1. Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, 02142, MA
  • 2. Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, 02142, MA.
  • 3. Else Kröner-Fresenius-Centre for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Munich, Germany.
  • 4. Big Data Institute, at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7FZ, UK.
  • 5. Institute of Nutritional Science, University Hohenheim, Stuttgart, 70599, Germany.
  • 6. Department of Biostatistics, Boston University School of Public Health, Boston, MA
  • 7. Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Germany.

Description

A primary obstacle in translating genetic associations with disease into therapeutic strategies is elucidating the cellular programs affected by genetic risk variants and effector genes. Here, we introduce LipocyteProfiler, a metabolic disease-oriented high-content image-based profiling tool that enables evaluation of thousands of morphological and cellular profiles which can be systematically linked to genes and genetic variants relevant to metabolic disease. We show that LipocyteProfiler allows surveillance of diverse cellular programs by generating rich context and process-specific morphological and cellular profiles across hepatocyte and adipocyte cell state transitions. We use LipocyteProfiler to identify known and novel cellular mechanisms altered by polygenic risk of metabolic disease, including insulin resistance, fat distribution, and the polygenic contribution to lipodystrophy. LipocyteProfiler paves the way for large-scale forward and reverse deep phenotypic profiling in lipocytes and provides a framework for the unbiased identification of causal relationships between genetic variants and cellular programs relevant to human disease.

Notes

https://www.biorxiv.org/content/10.1101/2021.07.17.452050v1

Files

high_content_imaging.csv

Files (14.6 MB)

Name Size Download all
md5:632fb02a7938d7b1ba06b6f770ba60c8
2.4 kB Download
md5:3cc2b2f85377b578986754234d6be08d
2.7 kB Download
md5:fbfebba693582ad3f589935d658587d3
2.1 kB Download
md5:5c4498dee53ebc49e15eb0a249dc1218
2.1 kB Download
md5:d47b26c98b5c0916ac917de155577a93
2.8 kB Download
md5:f3fd5a2537b171b91de4c4e43d01f63f
5.7 kB Download
md5:b8c357cbf5f916dd0626f7618b39d061
7.7 kB Download
md5:cd0cd9a84863bd4ae58847cd8d8107ec
10.4 kB Download
md5:00532e2ce21858ef6548eb284e6c9036
9.9 kB Download
md5:6a073cd865b76fb9e75ef9c09c949003
7.9 kB Download
md5:17eb7bff164be9722a66389cda6104c6
8.5 kB Download
md5:39590ffd2963c44fffbb8cbfece15f1d
8.4 kB Download
md5:8b8ff0d0ef580534be5ebf053615ab27
8.0 kB Download
md5:c61413cd4c8f3b540cf9e19ea5262b13
4.3 kB Download
md5:73285a33ba3c8c6738f774a5e1250bc8
10.8 MB Preview Download
md5:7e1080efd8d7edc5fc742789e2d5b2a2
3.6 kB Download
md5:03a88b9ef4222de48e40b18f4a8e32c4
4.8 kB Download
md5:6e6f8d51735a757fbd79e10772b6af15
2.9 kB Download
md5:61667a86fc90e5abdff0abebf82cd027
5.7 kB Download
md5:d840d72fa8bc354bb9ba325b9ff3995a
1.7 kB Download
md5:9cfd0617e37b51bf34b688daa7a1fddc
5.5 kB Download
md5:ae770b3af2c5b1b5ae9245d230469c71
4.9 kB Download
md5:4a42a46f7e3006099d04fc062c56744d
2.7 kB Download
md5:0032ba20d18a31525e412a1e1d7ebf55
14.2 kB Preview Download
md5:5aa08424f162a0455ff6d6593ab780b6
11.9 kB Preview Download
md5:0d674e294576f007ee83ece2e4235d1d
2.3 kB Download
md5:27076db030d602c296a64bafcd9e3e2f
3.7 kB Preview Download
md5:839e7e7b038610fbad199c81dc5ef60b
5.2 kB Preview Download
md5:4a4c2bee5ee2d25660a1373aebe42c94
3.6 MB Download
md5:99f5394cd0f6edf6033cb83ced2eaf51
6.4 kB Download
md5:d592f813f026d2fa13d5fa04b8b1c33e
9.2 kB Download
md5:29cee1b10029c17cbd3b0d407813519f
3.9 kB Download
md5:dc09cd54dc222a7a5ba0628c8926998e
6.1 kB Download
md5:d4d9a98bfe6d5fab3d67978e27261b39
3.7 kB Download