Published November 11, 2022 | Version v1
Journal article Open

Supported Imidazolium-Based Ionic Liquids on a Polysulfone Matrix for Enhanced CO2 Capture

  • 1. Eurecat, Centre Tecnològic de Catalunya, Unitat de Tecnologia Química; Faculty of Chemistry, Universitat Rovira I Virgili
  • 2. Eurecat, Centre Tecnològic de Catalunya, Unitat de Tecnologia Química
  • 3. Eurecat, Centre Tecnològic de Catalunya, Unitat de Tecnologia Química; Department of Chemical Engineering, Universitat Rovira I Virgili

Description

The present work demonstrates the potential for improved CO2 capture capabilities of ionic liquids (ILs) by supporting them on a polysulfone polymeric matrix. CO2 is one of the main gases responsible for the greenhouse effect and is a focus of The European Commission, which committed to diminishing its emission to 55% by 2023. Various ILs based on combinations of 1-butyl-3-methyl- imidazolium cations and different anions (BMI·X) were synthesized and supported on a polysulfone porous membrane. The influence of the membrane structure and the nature of ILs on the CO2 capture abilities were investigated. It was found that the membrane’s internal morphology and its surface characteristics influence its ILs sorption capacity and CO2 solubility. In most of the studied configurations, supporting ILs on porous structures increased their contact surface and gas adsorption compared to the bulk ILs. The phenomenon was strongly pronounced in the case of ILs of high viscosity, where supporting them on porous structures resulted in a CO2 solubility value increase of 10×. Finally, the highest CO2 solubility value (0.24 molCO2/molIL) was obtained with membranes bearing supported ILs containing dicarboxylate anion (BMI.MAL).

Files

Supported Imidazolium-Based Ionic Liquids on a Polysulfone Matrix for Enhanced CO2 Capture_SunCoChem_EUT.pdf

Additional details

Funding

SunCoChem – Photoelectrocatalytic device for SUN-driven CO2 conversion into green CHEMicals 862192
European Commission