Published November 18, 2021 | Version v1
Journal article Open

Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments

  • 1. Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Constituyentes, Departamento de Radiobiología, San Martín, Buenos Aires, Argentina; Red de Investigación de Estresores Marinos-costeros en América Latina y el Caribe (REMARCO), Mar del Plata, 7602, Argentina
  • 2. Instituto Antártico Argentino (IAA), San Martín, Buenos Aires, Argentina; Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, 9410, Argentina; Universidad Nacional de Tierra del Fuego, Ushuaia, 9410, Argentina
  • 3. Instituto de Ciencias Básicas y Experimentales (ICBE), Universidad de Morón, Morón, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
  • 4. Ghent University, Faculty of Sciences, Biology Department, Marine Biology, Ghent, 9000, Belgium

Description

Abstract

Under the present changing climate conditions and the observed temperature increase, it is of high importance to understand its effects on aquatic microbial life, and organisms’ adaptations at the biochemical level. To adjust to temperature or salinity stress and avoid cell damage, organisms alter their degree of fatty acids (FAs) saturation. Thus, temperature is expected to have strong effects on both the quantity and quality of FAs in aquatic microorganisms. Here we review some recent findings about FAs sensitivity to climate change in contrasting environments. Overall, heat waves may induce changes in the relative abundance of polyunsaturated FAs (PUFA). However, the impact of the exposure to warming waters is different in temperate and polar environments. In cold marine waters, high concentration of omega-3 (ω3) FAs such as eicosapentaenoic acid (EPA) is promoted due to the activation of the desaturase enzyme. In this way, cells have enough energy to produce or activate antioxidant protection mechanisms and avoid oxidative stress due to heat waves. Contrastingly, under high irradiance and heat wave conditions in temperate environments, photosystems’ protection is achieved by decreasing EPA concentration due to desaturase sensitivity. Essential FAs are transferred in aquatic food webs. Therefore, any alteration in the production of essential FAs by phytoplankton (the main source of ω3) due to climate warming can be transferred to higher trophic levels, with cascading effects for the entire aquatic ecosystem.

Files

TSP_BIOCELL_17309.pdf

Files (2.0 MB)

Name Size Download all
md5:7e4aee3585cd27c7a1793f8aa3c4145d
2.0 MB Preview Download

Additional details

Funding

CoastCarb – Coastal ecosystem carbon balance in times of rapid glacier melt 872690
European Commission