Published October 18, 2022
| Version 1.0
Software
Open
Multimodal-fusion-driven scene analysis and understanding
Description
Multimodal fusion driven scene understanding
This repository provides a plugin for the OpenPCDet object detection framework that facilitates fusion of 2D and 3D object detection.
Instructions
- Please download, and install all the requirements of OpenPCDet
- Download folder named "fusion" into the root directory of OpenPCDet
- Structure should be the following
|
|
|-- data/
|
|-- docker/
|
|-- docs/
|
|-- pcdet/
|
|-- fusion/
|
|-- tools/
|
|-- LICENCE
|
|-- README.md
|
|-- requirements.txt
|
|-- setup.py
Limitations
- Non reported
- Successfully tested with commit b345b08c5d3e49ff82a5374d033ddd2b5e66253e [2022-09-25]
Requirements
Extra requirements for cropping pdf report in evalution script:
sudo apt-get install texlive-extra-utils
Usage
Configuration file:
fusion/cfgs_custom/multimodal/config.json
{
"multimodalv2": {
"root": "/home/<HOME_DIR>/Workspace/Automotive/OpenPCDet/",
"path_to_data": "data/kitti/training/",
"path_to_calibration_for_tracking": "calib.txt",
"path_to_groundtruth_for_tracking": "groundtruth.txt",
"path_to_image": "image_2/",
"path_to_image_right": "image_3/",
"path_to_lidar": "velodyne/",
"path_to_labels": "label_2/",
"deeplab_root": "",
"save_path_root": "fusion/results/dump/",
"save_path_came": "fusion/results/dump/image/",
"save_path_image_from_lidar": "fusion/results/dump/image_lidar/",
"save_path_meta_data": "fusion/results/dump/meta_data/",
"save_path_lidar": "fusion/results/dump/lidar/",
"cut_off_percentage": 0.8,
"cut_off_2D": 0.8,
"nms_fusion_threshold": 0.5,
"segmentation_model": "",
"image_detection_model": "fusion/imagedet/models/squeezedet_kitti_epoch280.pth",
"lidar_detection_cfg": "fusion/cfgs/kitti_models/pv_rcnn.yaml",
"lidar_detection_model": "fusion/trained/pv_rcnn_8369.pth",
"start_frame": 0,
"denoise": 0,
"meta_data": 0
},
"comment": {
}
}
Run fusion:
cd fusion
python runFusion.py
Evaluate fusion outcomes,
The script compares fusion with image-only and LIDAR-only detection:
cd fusion
python runEvaluate.py
Files
Multimodal-fusion-driven-scene-understanding.zip
Files
(1.9 GB)
Name | Size | Download all |
---|---|---|
md5:105932b002dc2fccd5faa67ef78ec26e
|
1.9 GB | Preview Download |
Additional details
Funding
References
- OD Team. "Openpcdet: An open-source toolbox for 3d object detection from point clouds." (2020).
- Wu, Bichen, et al. "Squeezedet: Unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving." Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2017.
- Pikoulis, E. V., Mavrokefalidis, C., Nousias, S., & Lalos, A. S. (2022). A new clustering-based technique for the acceleration of deep convolutional networks. In Deep Learning Applications, Volume 3 (pp. 123-150). Springer, Singapore.