Published January 25, 2022 | Version v1
Journal article Restricted

Phylogenomic Delimitation of Morphologically Cryptic Species in Globetrotting Nylanderia (Hymenoptera: Formicidae) Species Complexes

  • 1. Entomology & Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL, 32611, USA,
  • 2. Systematic Entomology Laboratory, ARS-USDA, Smithsonian Institution, Washington, DC, 20560, USA,
  • 3. Department of Biological Sciences, Towson University, Towson, MD 21252, USA,
  • 4. Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington,DC 20560, USA, and

Description

Williams, Jason L., Zhang, Y.Miles, LaPolla, John S., Schultz, Ted R., Lucky, Andrea (2022): Phylogenomic Delimitation of Morphologically Cryptic Species in Globetrotting Nylanderia (Hymenoptera: Formicidae) Species Complexes. Insect Systematics and Diversity (AIFB) 6 (1): 1-15, DOI: 10.1093/isd/ixab027, URL: http://dx.doi.org/10.1093/isd/ixab027

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:402DFFDE3B46FFF3FFB1FFF0FFF8FFD3
URL
http://publication.plazi.org/id/402DFFDE3B46FFF3FFB1FFF0FFF8FFD3

References

  • Andermann, T., A. M. Fernandes, U. Olsson, M. Topel, B. Pfeil, B. Oxelman, A. Aleixo, B. C. Faircloth, and A. Antonelli. 2019. Allele phasing greatly improves the phylogenetic utility of ultraconserved elements. Syst. Biol. 68: 32-46.
  • Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477.
  • Barraclough, T. G. 2019. The evolutionary biology of species. Oxford University Press.
  • Bastos, A. D., D. Nair, P. J. Taylor, H. Brettschneider, F. Kirsten, E. Mostert, E. von Maltitz, J. M. Lamb, P. van Hooft, S. R. Belmain, et al. 2011. Genetic monitoring detects an overlooked cryptic species and reveals the diversity and distribution of three invasive Rattus congeners in South Africa. BMC Genet. 12: 26.
  • Beheregaray, L. B., and A. Caccone. 2007. Cryptic biodiversity in a changing world. J. Biol. 6: 9.
  • Blaimer, B. B., S. G. Brady, T. R. Schultz, M. W. Lloyd, B. L. Fisher, and P. S. Ward. 2015. Phylogenomic methods outperform traditional multilocus approaches in resolving deep evolutionary history: a case study of formicine ants. BMC Evol. Biol. 15: 271.
  • Borowiec, M. L. 2016. AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ. 4: e1660.
  • Bossert, S., and B. N. Danforth. 2018. On the universality of target-enrichment baits for phylogenomic research. Methods Ecol. Evol. 2018: 1-8.
  • Bouckaert, R., J. Heled, D. Kuhnert,T. Vaughan, C. H. Wu, D. Xie, M. A. Suchard, A. Rambaut, and A. J. Drummond. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10: e1003537.
  • Boudinot, B. E. 2018. A general theory of genital homologies for the Hexapoda (Pancrustacea) derived from skeletomuscular correspondences, with emphasis on the Endopterygota.Arthropod Struct.Dev.47: 563-613.
  • Branstetter, M. G., and J. T. Longino. 2019. Ultra-conserved element phylogenomics of New World Ponera (Hymenoptera: Formicidae) illuminates the origin and phylogeographic history of the endemic exotic ant Ponera exotica. Insect Syst. Divers. 3: 1-13.
  • Branstetter, M. G., J. T. Longino, P. S. Ward, and B. C. Faircloth. 2017. Enriching the ant tree of life: enhanced UCE bait set for genome-scale phylogenetics of ants and other Hymenoptera. Methods Ecol. Evol. 8: 768-776.
  • Burbrink, F. T., H. Yao, M. Ingrasci, R. W. Bryson, Jr, T. J. Guiher, and S. Ruane. 2011. Speciation at the Mogollon Rim in the Arizona Mountain Kingsnake (Lampropeltis pyromelana). Mol. Phylogenet. Evol. 60: 445-454.
  • Carstens, B. C., T. A. Pelletier, N. M. Reid, and J. D. Satler. 2013. How to fail at species delimitation. Mol. Ecol. 22: 4369-4383.
  • Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540-552.
  • Chambers, E. A., and D. M. Hillis. 2020. The multispecies coalescent oversplits species in the case of geographically widespread taxa. Syst. Biol. 69: 184-193.
  • Chaplin, K., J. Sumner. C. A. Hipsley, and J. Melville. 2019. An integrative approach using phylogenomics and high-resolution X-ray computed tomography for species delimitation in cryptic taxa. Syst. Biol. 0: 1-14.
  • Creighton, W. S. 1950. The ants of North America. Bull. Museum Comp. Zool. 104: 1-585.
  • De Queiroz, K. 2007. Species concepts and species delimitation. Syst. Biol. 56: 879-886.
  • Derkarabetian, S., S. Castillo, P. K. Koo, S. Ovchinnikov, and M. Hedin. 2019. A demonstration of unsupervised machine learning in species delimitation. Mol. Phylogenet. Evol. 139: 106562.
  • Deyrup, M. 2016. Ants of Florida: identification and natural history. CRC Press, Boca Raton, Florida, USA.
  • Deyrup, M., L. Davis, and S. Cover. 2000. Exotic ants in Florida. Trans. Am. Entomol. Soc. 126: 293-326.
  • Domingos, F. M., R. J. Bosque, J. Cassimiro, G. R. Colli, M. T. Rodrigues, M. G. Santos, and L. B. Beheregaray. 2014. Out of the deep: cryptic speciation in a Neotropical gecko (Squamata, Phyllodactylidae) revealed by species delimitation methods. Mol. Phylogenet. Evol. 80: 113-124.
  • Emery,C. 1893. Beitrage zur Kenntniss der nordamerikanischen Ameisenfauna. Zoologische Jahrbucher. Abteilung fur Systematik, Geographie und Biologie der Tiere. 7: 633-682.
  • Faircloth, B. C. 2015. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics. 32: 786-788.
  • Fiser, C., C. T. Robinson, and F. Malard. 2018. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27: 613-635.
  • Fujisawa, T., and T. G. Barraclough. 2013. Delimiting species using singlelocus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Syst. Biol. 62: 707-724.
  • Gotzek, D., S. G. Brady, R. J. Kallal, and J. S. LaPolla. 2012. The importance of using multiple approaches for identifying emerging invasive species: the case of the Rasberry Crazy Ant in the United States. PLoS One. 7: e45314.
  • Gueuning, M., J. Frey., and C. Praz. 2020. Ultraconserved yet informative for species delimitation: UCEs resolve long-standing systematic enigma in Central European bees. Mol. Ecol. 1-22.
  • Guindon, S., J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel. 2010. New algorithms and methods to estimate maximumlikelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59: 307-321.
  • Hoang, D. T., O. Chernomor, A. Von. Haeseler, B. Q. Minh, and L. S. Vinh. 2017. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35: 518-522.
  • Huber, B. A. 2003. Rapid evolution and species-specificity of arthropod genitalia: Fact or artifact?. Org. Divers. Evol. 3: 63-71.
  • Janicki, J., N. Narula, M. Ziegler, B. Guenard, E. P.Economo. 2016. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: the design and implementation of antmaps. org. Ecol. Inform. 32: 185-193.
  • Jesovnik, A., J. Sosa-Calvo, M. W. Lloyd, M. G. Branstetter, F. Fernandez, and T. R. Schultz. 2017. Phylogenomic species delimitation and host-symbiont coevolution in the fungus-farming ant genus Sericomyrmex Mayr (Hymenoptera: Formicidae): ultraconserved elements (UCEs) resolve a recent radiation. Syst. Entomol. 42: 523-542.
  • Jones, G. 2017. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J. Math. Biol. 74: 447-467.
  • Junier, T., and E. M. Zdobnov. 2010. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26: 1669-1670.
  • Kallal, R. J., and J. S. LaPolla. 2012. Monograph of Nylanderia (Hymenoptera: Formicidae) of the world, part II: Nylanderia in the Nearctic. Zootaxa 64: 1-64.
  • Krushelnycky, P. D., L. L. Loope, N. J. Reimer. 2005. The ecology, policy, and management of ants in Hawaii. Proc. Hawaiian Entomol. Soc. 37: 1-25.
  • Lanfear, R., P. B. Frandsen, A. M. Wright, T. Senfeld, and B. Calcott. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34: 772-773.
  • Langerhans, R. B., C. M. Anderson, and J. L. Heinen-Kay. 2016. Causes and consequences of genital evolution. Integr. Comp. Biol. 56: 741-751.
  • LaPolla, J. S., and R. J. Kallal. 2019. Nylanderia of the world part III: Nylanderia in the West Indies. Zootaxa. 4658: zootaxa.4658.3.1.
  • LaPolla, J. S., Brady, S. G., and S. O. Shattuck. 2010. Phylogeny and taxonomy of the Prenolepis genus-group of ants (Hymenoptera: Formicidae). Syst. Entomol. 35: 118-131.
  • LaPolla, J. S., P. G. Hawkes, B. L. Fisher. 2011. Monograph of Nylanderia (Hymenoptera: Formicidae) of the world, part I: Nylanderia in the Afrotropics. Zootaxa. 3110: 10-36.
  • LaPolla, J. S., R. J. Kallal, and S. G. Brady. 2012. A new ant genus from the Greater Antilles and Central America, Zatania (Hymenoptera: Formicidae), exemplifies the utility of male and molecular character systems. Syst. Entomol. 37: 200-214.
  • Longino, J. T., and M. G. Branstetter. 2020. Phylogenomic species delimitation, taxonomy, and 'bird guide' identification for the Neotropical ant genus Rasopone (Hymenoptera: Formicidae). Mol. Phylogenet. Phylogenom. Phylogeogr. 4: 1-33.
  • Luo, A., C. Ling, S. Y. W. Ho, and C. D. Zhu. 2018. Comparison of methods for molecular species delimitation across a range of speciation scenarios. Syst. Biol. 67: 830-846.
  • Matos-Maravi, P., R. M. Clouse, E. M. Sarnat, E. P. Economo, J. S. LaPolla, M. Borovanska, C. Rabeling, J. E. Czekanski-Moir, F. Latumahina, E. O. Wilson, and M. Janda. 2018. An ant genus-group (Prenolepis) illuminates the biogeography and drivers of insect diversification in the IndoPacific. Mol. Phylogenet. Evol. 123: 16-25.
  • Mayr, E. 1942. Systematics and the origin of species, from the viewpoint of a zoologist. Harvard University Press.
  • Minh, B. Q., H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. von Haeseler, and R. Lanfear. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37: 1530-1534.
  • Morais, P., and M. Reichard. 2018. Cryptic invasions: a review. Sci. Total Environ. 613-614: 1438-1448.
  • Moritz, C., and C. Cicero. 2004. DNA barcoding: promise and pitfalls. PLoS Biol. 2: e354.
  • Prebus, M. M. 2021. Phylogenomic species delimitation in the ants of the Temnothorax salvini group (Hymenoptera: Formicidae): an integrative approach. Syst. Entomol. https://doi.org/10.1111/syen.12463
  • Rabiee, M., and S. Mirarab. 2020. Forcing external constraints on tree inference using ASTRAL. BMC Genom. 21: 218.
  • Rambaut, A., A. J. Drummond, D. Xie, G. Baele, and M. A. Suchard. 2018. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67: 901-904.
  • Sayyari, E., and S. Mirarab. 2016. Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol. 33: 1654-1668.
  • Seifert, B. 2009. Cryptic species in ants (Hymenoptera: Formicidae) revisited: we need a change in the alpha-taxonomic approach. Myrmecol. News. 12: 149-166.
  • Sukumaran, J., and L. L. Knowles. 2017. Multispecies coalescent delimits structure, not species. Proc. Natl. Acad. Sci. U. S. A. 114: 1607-1612.
  • Tagliacollo, V. A., and R. Lanfear. 2018. Estimating improved partitioning schemes for ultraconserved elements. Mol. Biol. Evol. 35: 1798-1811.
  • Trager, J. 1984. A revision of the genus Paratrechina (Hymenoptera: Formicidae) of the continental United States. Sociobiology. 9: 51-162.
  • Wagner, H. C., W. Arthofer, B. Seifert, C. Muster, F. M. Steiner, and B. C. Schlick-Steiner. 2017. Light at the end of the tunnel: Integrative taxonomy delimits cryptic species in the Tetramorium caespitum complex (Hymenoptera: Formicidae). Myrmecol. News. 25: 95-129.
  • Wetterer, J. K. 2011. Worldwide spread of the tropical fire ant, Solenopsis geminata (Hymenoptera: Formicidae). Myrmecol. News. 14: 21-35.
  • Wetterer, J. K. 2013. Exotic spread of Solenopsis invicta Buren (Hymenoptera:Formicidae) beyond North America. Sociobiology. 60: 50-55.
  • Williams, J. L., and J. S. Lapolla. 2016. Taxonomic revision and phylogeny of the ant genus Prenolepis (Hymenoptera: Formicidae). Zootaxa. 4200: 201-258.
  • Williams, J. L., and A. Lucky. 2020. Non-native and invasive Nylanderia crazy ants (Hymenoptera: Formicidae) of the world: Integrating genomics to enhance taxonomic preparedness. Ann. Entomol. Soc. Am. 113: 318-336.
  • Williams, J. L., Y. M. Zhang, M. W. Lloyd, J. S. LaPolla, T. R. Schultz, and A. Lucky. 2020. Global domination by crazy ants: phylogenomics reveals biogeographical history and invasive species relationships in the genus Nylanderia (Hymenoptera: Formicidae). Syst. Entomol. 730-744.
  • Yang, Z. 2015. The BPP program for species tree estimation and species delimitation. Curr. Zool. 61: 854-865.
  • Zamani, A., V. Vahtera, I. E. Saaksjarvi, and M. D. Scherz. 2020. The omission of critical data in the pursuit of 'revolutionary' methods to accelerate the description of species. Syst. Entomol. https://doi.org/10.1111/syen.12444
  • Zhang, J., P. Kapli, P. Pavlidis, and A. Stamatakis. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics. 29: 2869-2876. doi:10.1093/bioinformatics/btt499.
  • Zhang, C., M. Rabiee, E. Sayyari, and S. Mirarab. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19: 153.
  • Zhang, Y. M., J. L. Williams, and A. Lucky. 2019. Understanding UCEs: a comprehensive primer on using ultraconserved elements for arthropod phylogenomics. Insect Syst. Divers. 3. https://doi.org/10.1093/isd/ixz016