Published January 15, 2017
| Version v1
Journal article
Open
Hybrid neural network with genetic algorithms for predicting distribution pattern of Tetranychus urticae (Acari: Tetranychidae) in cucumbers field of Ramhormoz, Iran
- 1. . Department of Plant Protection, Faculty of Agriculture, Shahrood University, Shahrood, Iran; E-mail: shabanialireza565@gmail.com
- 2. . Department of Plant Production and Sustainable Agriculture, Iranian Research Organization for Science and Technology, Tehran, Iran; E-mail: tafaghodinia@gmail.com
- 3. . Department of Plant Protection, Faculty of Agriculture, Ramin Agricluture and Natural Resources University of Khuzestan, Ahvaz, Iran; E-mail: nzandisohani@yahoo.com
Description
Shabaninejad, Alireza, Tafaghodinia, Bahram, Sohani, Nooshin Zandi (2017): Hybrid neural network with genetic algorithms for predicting distribution pattern of Tetranychus urticae (Acari: Tetranychidae) in cucumbers field of Ramhormoz, Iran. Persian Journal of Acarology 6 (1): 53-62, DOI: 10.22073/pja.v6i1.26019, URL: https://www.mendeley.com/catalogue/bd78f6ea-750a-344e-981f-25426dc1f266/
Files
source.pdf
Files
(638.8 kB)
Name | Size | Download all |
---|---|---|
md5:cae48e97443843ec5b2ea6003f1d842f
|
638.8 kB | Preview Download |
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:FFE4FF974438FFEC5B2EA6003F1D842F
Related works
- Has part
- Figure: 10.5281/zenodo.7173855 (DOI)
References
- Cardina, J. & Doohan, D.J. (2008) Weed biology and precision farming. Site-specific management guideline, www.ppi-far.org/ssmg (Accessed on 10 May 2016).
- Choudhury, S.K. & Bartarya, G. (2003) Role of temperature and surface finish in predicting tool wear using neural network and design of experiments. International Journal of Machine Tools & Manufacture, 10(2): 747-753.
- Dille, J.A., Milner, M., Groeteke, J.J., Mortensen, D.A. & Williams, M.M. (2003) How good is your weed map? A comparison of spatial interpolators. Weed Science, 51(3): 44-55.
- Filippi, A.M. & Jensen, J.R. (2006) Fuzzy learning vector quantization for hyper spectral coastal vegetation classification. Remote Sensing Environment, 100(6): 512-530.
- Freeman, J. & Sakura, D. (2005) Neural Networks: Algorithms, Applications, and Programming Techniques. Addison-Wesley, Berlin, 520 pp.
- Goldberg, D. (1999) Genetic algorithms in search optimization and machine learning. AddisonWesley, Boston, 320 pp.
- Gorman, K., Hewitt, F., Denholm, L. & Devine, G.J. (2001) New developments in insecticide resistance in the glasshouse whitefly (Trialeurodes vaporariorum) and the two-spotted spider mite (Tetranychus urticae) in the UK. Pest Management Science, 58(6): 123-130.
- Gotway, C. A., Ferguson, R.B., Hergert, G.W. & Peterson, T.A. (1996) Comparison of kriging and inverse distance methods for mapping soil parameters. Soil Science Society America Journal, 60(13): 1237-1247.
- Isman, M. (1999) Pestcides based on plant essential oils. Pesticide Outlook, 10: 68-72.
- Kim, K. (2006) Artificial neural network with evolutionary instance selection for financial forcasting. Expert Systems with Application, 30(3): 519-526.
- Kumar, D.N., Srinivasa, R.K. & Ashok, B. (2006) Optimal reservoir operation for irrigation of multiple crops using genetic algorithms. Journal of Irrigation Drainage Engineering, 132(5): 123-129.
- Kaastra, I. & Boyd, M. (1996) Designing a neural network for forecasting financial and economic time series. Neurocomputing, 12(5): 13-19.
- Liu, Z. Y., Wu, H.F. & Huang, J.-F. (2010) Application of neural networks to discriminate fungal infection levels in rice panicles using hyper spectral reflectance and principal components analysis. Computers and Electronics in Agriculture, 72(2): 99-106.
- Lohn, J.D., Kraus, W. & Haith, G. (2002) Comparing a coevolutionary genetic algorithm for multiobjective optimization. Second International IEEE Congress on Evolutionary Computation, USA, pp. 1157-1162.
- Makarian, H., Rashed Mohassel, M.H., Bannayan, M. & Nassiri, M. (2007) Soil seed bank and seedling populations of Hordeum murinum and Cardaria draba in saffron fields. Agriculture Ecosystems and Environment, 120(3): 307-312.
- Nario, L.S., Oliver-Verel, J. & Stashenko, E.E. (2010) Repellent activity of essential oils: A review. Bioresource Technology, 101(5): 372-378.
- Paredis, J. (1995) The symbiotic evolution of solutions and their representations. In: Eshelman, L. (Ed.), Proceeding of sixth international conference on genetic algorithms. San Mateo, CA: Morgan Kaufmann, pp. 359-365.
- Searcy, S.W. (2008) Precision farming: a new approach to crop management. Texas Agricultural Extension Service. Txprecag.tamu.edu/content/pub/pf-ncm.pdf (Accessed on 20 April 2016).
- Shu-Heng, C. (2002) Genetic algorithm and genetic programming in computational finance. Springer Kluwer Acadamic Publications, New York, USA, 533 pp.
- Seraj, A.A. (2011) Principle of plant pest control. Shahid Chamran Univerity Press, Ahwaz, Iran, 745 pp.
- Vakil-Baghmisheh, M.T. & Pavesic, N. (2003) Premature clustering phenomenon and new training algorithms for LVQ. Pattern recognition, 36(5): 1901-1921.
- Vellido, A., Liboa, P.J.G. & Vaughan, J. (2010) Neural networks in business: A survey of applications. Expert Systems with Application, 19(3): 12-24.
- Williams, M.M., Gerhards, R. & Mortensen, D.A. (1999) Spatial temporal outcomes of site-specific weed management in maize. In: Stafford, J.V. (Ed.), Precision Agriculture 99. Sheffield, Great Britain: Society of Chemical Industry. pp. 897-906
- Chon, T.-S., Park, Y.-S., Kim, J.-M., Lee, B.-Y., Chung Y.-J. & Kim, Y.S. (2000) Use of an artificial neural network to predict population dynamics of the forest-pest pine needle gall midge (Diptera: Cecidomyiida). Environmental Entomology, 29(6):1208-1215.
- Yuxin, M., Mulla, D.J. & Pierre, C.R. (2006) Identifying important factors influencing corn yield and grain quality variability using artificial neural networks. Precision Agriculture, 7(2): 117-135.
- Zhang, Y. F. & Fuh, J.Y.H. (1998) A neural network approach for early cost estimation of packaging products. Computers & Industrial Engineering, 34(2): 433-450.
- Zhang, W. J., Zhong, X.Q. & Liu, G.H. (2008) Recognizing spatial distribution patterns of grassland insects: neural network approaches. Stochastic Environmental Research and Risk Assessment, 22(8): 207-216.