Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published December 23, 2019 | Version v1
Journal article Restricted

Phylogeny of the Hawkmoth Tribe Ambulycini (Lepidoptera: Sphingidae): Mitogenomes from Museum Specimens Resolve Major Relationships

  • 1. Department of Natural Sciences,Middlesex University,The Burroughs,London NW4 4BT,UK,
  • 2. Department of Life Sciences,Natural History Museum, Cromwell Road, London SW7 5BD, UK,
  • 3. McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History,University of Florida,Gainesville,FL 32611,
  • 4. Department of Entomology,Plant Pathology and Nematology,University of Idaho, Moscow, ID 83844, and

Description

Timmermans, Martijn J. T. N., Daghmoumi, Sainab M., Glass, Deborah, Hamilton, Chris A., Kawahara, Akito Y., Kitching, Ian J. (2019): Phylogeny of the Hawkmoth Tribe Ambulycini (Lepidoptera: Sphingidae): Mitogenomes from Museum Specimens Resolve Major Relationships. Insect Systematics and Diversity (AIFB) 3 (6), No. 12: 1-8, DOI: 10.1093/isd/ixz025, URL: http://dx.doi.org/10.1093/isd/ixz025

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFB320623A451C03FFB0FFD1FFA0D40E
URL
http://publication.plazi.org/id/FFB320623A451C03FFB0FFD1FFA0D40E

References

  • Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
  • Avise, J. C. and D. Ellis. 1986. Mitochondrial DNA and the evolutionary genetics of higher animals [and discussion]. Philos. Trans. R. Soc. B Biol. Sci. 312: 325-342. doi:10.1098/rstb.1986.0011
  • Ballard, J. W. O. 2000. When one is not enough: introgression of mitochondrial DNA in Drosophila. Mol. Biol. Evol. 17: 1126-1130. doi:10.1093/ oxfordjournals.molbev.a026394
  • Ballesteros-Mejia, L., I. J. Kitching, W. Jetz, and J. Beck. 2017. Putting insects on the map: near-global variation in sphingid moth richness along spatial and environmental gradients. Ecography 40: 698-708. doi:10.1111/ ecog.02438
  • Beerli, N., F. Bartschi, L. Ballesteros-Mejia, I. J. Kitching, and J. Beck. 2019. How has the environment shaped geographical patterns of insect body sizes? A test of hypotheses using sphingid moths. J. Biogeogr. jbi.13583. doi:10.1111/jbi.13583
  • Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma. Oxf. Engl. 30: 2114- 2120. doi:10.1093/bioinformatics/btu170
  • Cardoso, L. W. 2015. Contribuicao de marcadores morfologicos e moleculares na elucidacao da Sistematica de Ambulycini (Lepidoptera, Sphingidae, Smerinthinae) (Mestrado em Zoologia). Universidade de Sao Paulo, Sao Paulo. doi:10.11606/D.41.2015.tde-23092015-081044
  • Gillett, C. P. D. T., A. Crampton-Platt, M. J. T. N. Timmermans, B. H. Jordal, B. C. Emerson, and A. P. Vogler. 2014. Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea). Mol. Biol. Evol. 31: 2223-2237. doi:10.1093/molbev/ msu154
  • Guindon, S., J.-F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel. 2010. New algorithms and methods to estimate maximumlikelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59: 307-321. doi:10.1093/sysbio/syq010
  • Hamilton, C. A., R. A. St Laurent, K. Dexter, I. J. Kitching, J. W. Breinholt, A. Zwick, M. J. T. N. Timmermans, J. R. Barber, and A. Y. Kawahara. 2019. Phylogenomics resolves major relationships and reveals significant diversification rate shifts in the evolution of silk moths and relatives. BMC Evol. Biol. 19: 182. doi:10.1186/s12862-019-1505-1
  • Holloway, J. D., 1979. A survey of the Lepidoptera, biogeography and ecology of New Caledonia. pp. 588. In E. Schmitschek and K. A. Spencer (eds.), Series entomologica 15. Dr. W. Junk B.V. Publishers, The Hague, Boston, London.
  • Hossie, T. J., T. N. Sherratt, D. H. Janzen, and W. Hallwachs. 2013. An eyespot that "blinks": an open and shut case of eye mimicry in Eumorpha caterpillars (Lepidoptera: Sphingidae). J. Nat. Hist. 47: 2915-2926. doi:10.10 80/00222933.2013.791935
  • Hundsdoerfer, A. K., M. Packert, C. Kehlmaier, P. Strutzenberger, and I. J. Kitching. 2017. Museum archives revisited: central Asiatic hawkmoths reveal exceptionally high late Pliocene species diversification (Lepidoptera, Sphingidae). Zool. Scr. 46: 552-570. doi:10.1111/zsc.12235
  • Kawahara, A. Y., and J. R. Barber. 2015. Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation. Proc. Natl. Acad. Sci. USA 112: 6407-6412. doi:10.1073/ pnas.1416679112
  • Kawahara, A. Y., A. A. Mignault, J. C. Regier, I. J. Kitching, and C. Mitter. 2009. Phylogeny and biogeography of hawkmoths (Lepidoptera: Sphingidae): evidence from five nuclear genes. PLoS ONE 4: e5719. doi:10.1371/journal.pone.0005719
  • Kitching, I. J. 2019. Sphingidae taxonomic inventory. http://sphingidae. myspecies.info/. Accessed 25 October 2019.
  • Kitching, I. J., and J.-M. Cadiou. 2000. Hawkmoths of the World: an annotated and illustrated revisionary checklist (Lepidoptera: Sphingidae). Ann. Entomol. Soc. Am. 93: 1195-1196. doi:10.1093/aesa/93.5.1195g
  • Kitching, I., R. Rougerie, A. Zwick, C. Hamilton, R. St Laurent, S. Naumann, L. Ballesteros Mejia, and A. Kawahara. 2018. A global checklist of the Bombycoidea (Insecta: Lepidoptera). Biodivers. Data J. 6: e22236. doi:10.3897/BDJ.6.e22236
  • Minh, B. Q., M. A. T. Nguyen, and A. von Haeseler. 2013. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30: 1188-1195. doi:10.1093/molbev/mst024
  • More, M., I. J. Kitching, and A. Cocucci. 2005. Sphingidae: Esfingidos de Argentina. Hawkmoths of Argentina. xvi + 166 pp. L.O.L.A. (Literature of Latin America), Buenos Aires, Argentina.
  • Nguyen,L.-T., H. A. Schmidt,A. von Haeseler,and B. Q. Minh. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32: 268-274. doi:10.1093/molbev/msu300
  • Paradis, E., J. Claude, and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290.
  • Peigler, R. S. 1993. Wild silks of the World. Am. Entomol. 39: 151-162. doi:10.1093/ae/39.3.151
  • Peng, Y., H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinforma. Oxf. Engl.28: 1420-1428. doi:10.1093/ bioinformatics/bts174
  • Ponce, F. V., J. W. Breinholt, T. Hossie, J. R. Barber, D. H. Janzen, W. Hallwachs, and A. Y. Kawahara. 2015. A molecular phylogeny of Eumorpha (Lepidoptera: Sphingidae) and the evolution of anti-predator larval eyespots. Syst. Entomol. 40: 401-408. doi:10.1111/syen.12111
  • R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Ranwez, V., S. Harispe, F. Delsuc, and E. J. P. Douzery. 2011. MACSE: multiple alignment of coding sequences accounting for frameshifts and stop codons. PLoS ONE 6: e22594. doi:10.1371/journal.pone.0022594
  • Revell, L. J. 2012. Phytools: an R package for phylogenetic comparative biology (and other things): phytools: R package. Methods Ecol. Evol. 3: 217-223. doi:10.1111/j.2041-210X.2011.00169.x
  • Roe, A., S. J. Weller, J. Baixeras, J. Brown, M. Cummings, D. Davis, A. Kawahara, C. Parr, J. C. Regier, and D. Rubinoff. 2009. Evolutionary framework for Lepidoptera model systems, pp. 1-24. In M. Goldsmith and F. Marec (eds.), Genetics and molecular biology of Lepidoptera. CRC Press, Boca Raton, FL.
  • Ronquist, F., and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
  • Rothschild, L.W., and K. Jordan. 1903. A revision of the lepidopterous family Sphingidae. Novit. Zool. 9 (Suppl.): 1-972.
  • Schmieder, R., and R. Edwards. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27: 863-864. doi:10.1093/ bioinformatics/btr026
  • Tamura, K., and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526. doi:10.1093/oxfordjournals. molbev.a040023
  • Thomsen, P. F., S. Elias, M. T. P. Gilbert, J. Haile, K. Munch, S. Kuzmina, D. G. Froese, A. Sher, R. N. Holdaway, and E. Willerslev. 2009. Nondestructive sampling of ancient insect DNA. PLoS ONE 4: e5048.
  • Timmermans, M. J.T. N., S. Dodsworth, C. L. Culverwell, L. Bocak, D. Ahrens, D. T. J. Littlewood, J. Pons, and A. P. Vogler. 2010. Why barcode? Highthroughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res. 38:e197.
  • Timmermans, M. J. T. N., C. Viberg, G. Martin, K. Hopkins, and A. P. Vogler. 2015. Rapid assembly of taxonomically validated mitochondrial genomes from historical insect collections. Biol. J. Linn. Soc. 117: 83-95. doi:10.1111/bij.12552.
  • Viette, P. E. L. 1971. Un nouveau sphingide de Nouvelle-Caledonie. Entomops 23: 237-240.
  • Zhang, J., K. Kobert, T. Flouri, and A. Stamatakis. 2014. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30: 614-620. doi:10.1093/bioinformatics/btt593