Published June 8, 2022 | Version v1
Journal article Open

Molecular evolutionary trends and biosynthesis pathways in the Oribatida revealed by the genome of Archegozetes longisetosus

  • 1. Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, United States of America.
  • 2. Department of Biology, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, United
  • 3. Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, United States of America. & David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States of America.

Description

Brückner, Adrian, Barnett, Austen A., Bhat, Prashant, Antoshechkin, Igor A., Kitchen, Sheila A. (2022): Molecular evolutionary trends and biosynthesis pathways in the Oribatida revealed by the genome of Archegozetes longisetosus. Acarologia 62 (2): 532-573, DOI: 10.24349/pjye-gkeo, URL: https://www1.montpellier.inrae.fr/CBGP/acarologia/article.php?id=4528

Files

source.pdf

Files (15.3 MB)

Name Size Download all
md5:11d1e7ba523527d1cac660aff96ace25
15.3 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFD1FFBA5235FFD1FFC6FFAFF96ACE25
URL
http://publication.plazi.org/id/FFD1FFBA5235FFD1FFC6FFAFF96ACE25

References

  • Alberti G. 1984. The contribution of comparative spermatology to problems of acarine systematics. Acarology VI: 479-490.
  • Alberti G. 1991. Spermatology in the Acari: systematic and functional implications. In: Schuster R., Murphy P.W., (Eds). The Acari - Reproduction, Development and Life-History Strategies. London: Chapman & Hall. p. 77-105. https://doi.org/10.1007/978-94-011-3102-5_6
  • Alberti G. 1998. Fine structure of receptor organs in oribatid mites (Acari). In: Ebermann E., (Ed). Arthropod biology: Contributions to morphology, ecology and systematics. Wien: Austrian Academy of Sciences Press p. 27-77.
  • Alberti G., Coons L.B. 1999. Acari-Mites. New York: Wiley. pp. 1265.
  • Alberti G., Michalik P. 2004. Feinstrukturelle Aspekte der Fortpflanzungssysteme von Spinnentieren (Arachnida). Denisia, 12: 1-62.
  • Alberti G., Moreno-Twose A.I. 2012. Fine structure of the primary eyes in Heterochthonius gibbus (Oribatida, Heterochthoniidae) with some general remarks on photosensitive structures in oribatid and other actinotrichid mites. Soil Org, 84: 391-408.
  • Altincicek B., Kovacs J.L., Gerardo N.M. 2012. Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae. Biol Lett, 8: 253-257. https://doi.org/10.1098/rsbl.2011.0704
  • Andrews S. 2010. FastQC: A quality control tool for high throughput sequence data. Ref Source: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
  • Aoki J. 1965. Oribatiden (Acarina) Thailands. I. Nat Life Southeast Asia, 4: 129-193.
  • Arkhipova I., Meselson M. 2000. Transposable elements in sexual and ancient asexual taxa. PNAS, 97: 14473-14477. https://doi.org/10.1073/pnas.97.26.14473
  • Babicki S., Arndt D., Marcu A., Liang Y., Grant J.R., Maciejewski A., Wishart D.S. 2016. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res, 44: W147-W153. https://doi.org/10.1093/nar/ gkw419
  • Bairoch A., Apweiler R. 2000. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res, 28: 45-48. https://doi.org/10.1093/nar/28.1.45
  • Ballesteros J.A., Sharma P.P. 2019. A critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error. Syst Biol, 68: 896-917. https://doi.org/10.1093/sysbio/ syz011
  • Bao W., Kojima K.K., Kohany O. 2015. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 6: 11. https://doi.org/10.1186/s13100-015-0041-9
  • Barnett A.A., Thomas R.H. 2012. The delineation of the fourth walking leg segment is temporally linked to posterior segmentation in the mite Archegozetes longisetosus(Acari: Oribatida, Trhypochthoniidae). Evol Dev, 14: 383-92. https://doi.org/10.1111/j.1525-142X.2012.00556.x
  • Barnett A.A., Thomas R.H. 2013a. The expression of limb gap genes in the mite Archegozetes longisetosus reveals differential patterning mechanisms in chelicerates. Evol Dev, 15: 280-92. https://doi.org/10.1111/ede.12038
  • Barnett A.A., Thomas R.H. 2013b. Posterior Hox gene reduction in an arthropod: Ultrabithorax and Abdominal-B are expressed in a single segment in the mite Archegozetes longisetosus. EvoDevo, 4: 23. https://doi.org/10.1186/2041-9139-4-23
  • Barnett A.A., Thomas R.H. 2018. Early segmentation in the mite Archegozetes longisetosus reveals conserved and derived aspects of chelicerate development. Dev Genes Evol, 228: 213-217. https://doi.org/10.1007/s00427-018-0615-x
  • Barrero R.A., Guerrero F.D., Black M., McCooke J., Chapman B., Schilkey F., de Leon A.A.P., Miller R.J., Bruns S., Dobry J. 2017. Gene-enriched draft genome of the cattle tick Rhipicephalus microplus: assembly by the hybrid Pacific Biosciences/Illumina approach enabled analysis of the highly repetitive genome. Int J Parasitol, 47: 569-583. https://doi.org/10.1016/j.ijpara.2017.03.007
  • Barton N.H. 2010. Mutation and the evolution of recombination. Philos Trans R Soc Lond B Biol Sci,
  • 365: 1281-1294. https://doi.org/10.1098/rstb.2009.0320
  • Bast J., Schaefer I., Schwander T., Maraun M., Scheu S., Kraaijeveld K. 2016. No accumulation of transposable elements in asexual arthropods. Mol Biol Evol, 33: 697-706. https://doi.org/10.1093/ molbev/msv261
  • Bateman A., Coin L., Durbin R., Finn R.D., Hollich V., Griffiths-Jones S., Khanna A., Marshall M., Moxon S., Sonnhammer E.L. 2004. The Pfam protein families database. Nucleic Acids Res, 32: D138-D141. https://doi.org/10.1093/nar/gkh121
  • Benjamini Y., Hochberg Y. 1995. Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. J R Stat Soc Series B, 57: 289-300. https://doi.org/10.1111/j.2517-6161. 1995.tb02031.x
  • Bensoussan N., Santamaria M.E., Zhurov V., Diaz I., Grbic M., Grbic V. 2016. Plant-herbivore interaction: dissection of the cellular pattern of Tetranychus urticae feeding on the host plant. Front Plant Sci, 7: 1105. https://doi.org/10.3389/fpls.2016.01105
  • Benton R., Vannice K.S., Gomez-Diaz C., Vosshall L.B. 2009. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell, 136: 149-162. https://doi.org/10.1016/j.cell.2008.12.001
  • Beran F., Kollner T.G., Gershenzon J., Tholl D. 2019. Chemical convergence between plants and insects: biosynthetic origins and functions of common secondary metabolites. New Phytol. https://doi.org/10.1111/nph.15718
  • Bergmann P., Laumann M., Norton R.A., Heethoff M. 2018. Cytological evidence for automictic thelytoky in parthenogenetic oribatid mites (Acari, Oribatida): Synaptonemal complexes confirm meiosis in Archegozetes longisetosus. Acarologia, 58: 342-356. https://doi.org/10.24349/acarologia/20184246
  • Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvak Z., Levin H.L., Macfarlan T.S. 2018. Ten things you should know about transposable elements. Genome
  • Biol, 19: 1-12. https://doi.org/10.1186/s13059-018-1577-z
  • Brandt A., Van P.T., Bluhm C., Anselmetti Y., Dumas Z., Figuet E., Francois C.M., Galtier N., Heimburger B., Jaron K.S. 2021. Haplotype divergence supports long-term asexuality in the oribatid mite Oppiella nova. Proceedings of the National Academy of Sciences, 118. https://doi.org/10.1073/pnas.2101485118
  • Bray N.L., Pimentel H., Melsted P., Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nat Biotech, 34: 525-527. https://doi.org/10.1038/nbt.3519
  • Breitmaier E. 2006. Terpenes: flavors, fragrances, pharmaca, pheromones. Weinheim: John Wiley &
  • Bruckner A. 2021. Data related to "The Archegozetes longisetosus genome project". CaltechDATA. In: CaltechDATA, (Ed). 1.0 ed. Pasadena: CaltechDATA. https://doi.org/10.22002/D1.1876
  • Bruckner A., Heethoff M. 2016. Scent of a mite: origin and chemical characterization of the lemon-like flavor of mite-ripened cheeses. Exp Appl Acarol, 69: 249-61. https://doi.org/10.1007/s10493-016-0040-7
  • Bruckner A., Heethoff M. 2017. The ontogeny of oil gland chemistry in the oribatid mite Archegozetes longisetosus Aoki (Oribatida, Trhypochthoniidae). Int J Acarol, 43: 337-342. https://doi.org/10.1080/ 01647954.2017.1321042
  • Bruckner A., Heethoff M. 2018. Nutritional effects on chemical defense alter predator-prey dynamics. Chemoecology, 28: 1-9. https://doi.org/10.1007/s00049-018-0253-9
  • Bruckner A., Hilpert A., Heethoff M. 2017a. Biomarker function and nutritional stoichiometry of neutral lipid fatty acids and amino acids in oribatid mites. Soil Biol Biochem, 115: 35-43. https://doi.org/10.1016/j.soilbio.2017.07.020
  • Bruckner A., Kaltenpoth M., Heethoff M. 2020. De novo biosynthesis of simple aromatic compounds by an arthropod ( Archegozetes longisetosus). Proc R Soc Lond Biol, 287: 20201429. https://doi.org/10. 1098/rspb.2020.1429
  • Bruckner A., Parker J. 2020. Molecular evolution of gland cell types and chemical interactions in animals.
  • Bruckner A., Raspotnig G., Wehner K., Meusinger R., Norton R.A., Heethoff M. 2017b. Storage and release of hydrogen cyanide in a chelicerate ( Oribatula tibialis). PNAS, 114: 3469-3472. https://doi.org/10.1073/pnas.1618327114
  • Bruckner A., Schuster R., Smit T., Heethoff M. 2018a. Imprinted or innated food preferences in the model mite Archegozetes longisetosus(Actinotrichida, Oribatida, Trhypochthoniidae). Soil Org, 90: 23-26.
  • Bruckner A., Schuster R., Smit T., Pollierer M.M., Schaffler I., Heethoff M. 2018b. Track the snack - Olfactory cues shape foraging behaviour of decomposing soil mites (Oribatida). Pedobiologia, 66. https://doi.org/10.1016/j.pedobi.2017.10.004
  • Bruckner A., Schuster R., Wehner K., Heethoff M. 2018c. Effects of nutritional quality on the reproductive biology of Archegozetes longisetosus(Actinotrichida, Oribatida, Trhypochthoniidae) Soil Org, 90:
  • Bruckner A., Stabentheiner E., Leis H.J., Raspotnig G. 2015. Chemical basis of unwettability in Liacaridae (Acari, Oribatida): specific variations of a cuticular acid/ester-based system. Exp Appl Acarol, 66: 313-35. https://doi.org/10.1007/s10493-015-9914-3
  • Bruckner A., Wehner K., Neis M., Heethoff M. 2016. Attack and defense in a gamasid-oribatid mite predator-prey experiment - sclerotization outperforms chemical repellency. Acarologia, 56: 451-461. https://doi.org/10.1051/acarologia/20164135
  • Bruna T., Hoff K., Stanke M., Lomsadze A., Borodovsky M. 2020. BRAKER2: Automatic Eukaryotic Genome Annotation with GeneMark-EP+ and AUGUSTUS Supported by a Protein Database. bioRxiv. https://doi.org/10.1101/2020.08.10.245134
  • Bryon A., Kurlovs A.H., Dermauw W., Greenhalgh R., Riga M., Grbic M., Tirry L., Osakabe M., Vontas J., Clark R.M. 2017. Disruption of a horizontally transferred phytoene desaturase abolishes carotenoid accumulation and diapause in Tetranychus urticae. Proceedings of the National Academy of Sciences, 114: E5871-E5880. https://doi.org/10.1073/pnas.1706865114
  • Budelli G., Ni L., Berciu C., van Giesen L., Knecht Z.A., Chang E.C., Kaminski B., Silbering A.F., Samuel A., Klein M. 2019. Ionotropic receptors specify the morphogenesis of phasic sensors controlling rapid thermal preference in Drosophila. Neuron, 101: 738-747. e3. https://doi.org/10.1016/j.neuron.2018.12.022
  • Bunnell T., Hanisch K., Hardege J.D., Breithaupt T. 2011. The fecal odor of sick hedgehogs ( Erinaceus europaeus) mediates olfactory attraction of the tick Ixodes hexagonus. J Chem Ecol, 37: 340. https://doi.org/10.1007/s10886-011-9936-1
  • Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V., Henrissat B. 2009. The Carbohydrate- Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res, 37: D233-D238. https://doi.org/10.1093/nar/gkn663
  • Cao Z., Yu Y., Wu Y., Hao P., Di Z., He Y., Chen Z., Yang W., Shen Z., He X. 2013. The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nature communications, 4:
  • Capella-Gutierrez S., Silla-Martinez J.M., Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25: 1972-1973. https://doi.org/10.1093/ bioinformatics/btp348
  • Carlson M., Pages H. 2019. AnnotationForge: Tools for building SQLite-Based Annotation Data
  • Chan P.P., Lowe T.M. 2019. tRNAscan-SE: searching for tRNA genes in genomic sequences. Gene Prediction. Springer. p. 1-14. https://doi.org/10.1007/978-1-4939-9173-0_1
  • Charlesworth B. 2012. The effects of deleterious mutations on evolution at linked sites. Genetics, 190:
  • Chikhi R., Medvedev P. 2014. Informed and automated k-mer size selection for genome assembly. Bioinformatics, 30: 31-37. https://doi.org/10.1093/bioinformatics/btt310
  • Cohen A.C. 1995. Extra-oral digestion in predaceous terrestrial Arthropoda. Annual Rev Entomo, 40: 85-103. https://doi.org/10.1146/annurev.en.40.010195.000505
  • Consortium G.O. 2004. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res,
  • Consortium G.O. 2019. The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res,
  • 47: D330-D338. https://doi.org/10.1093/nar/gky1055
  • Consortium T.G.S. 2008. The genome of the model beetle and pest Tribolium castaneum. Nature, 452: 949. https://doi.org/10.1038/nature06784
  • Conway J.R., Lex A., Gehlenborg N. 2017. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics, 33: 2938-2940. https://doi.org/10.1093/bioinformatics/btx364
  • Cook C.E., Smith M.L., Telford M.J., Bastianello A., Akam M. 2001. Hox genes and the phylogeny of the arthropods. Curr Biol, 11: 759-763. https://doi.org/10.1016/S0960-9822(01)00222-6
  • D., Grozinger C.M. 2010. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics, 11: 602. https://doi.org/10.1186/1471-2164-11-602
  • Crescente J.M., Zavallo D., Helguera M., Vanzetti L.S. 2018. MITE Tracker: an accurate approach to identify miniature inverted-repeat transposable elements in large genomes. BMC Bioinf, 19: 348. https://doi.org/10.1186/s12859-018-2376-y
  • Crisp A., Boschetti C., Perry M., Tunnacliffe A., Micklem G. 2015. Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol, 16: 1-13. https://doi.org/10.1186/s13059-015-0607-3
  • Croset V., Rytz R., Cummins S.F., Budd A., Brawand D., Kaessmann H., Gibson T.J., Benton R. 2010. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS genetics, 6: e1001064. https://doi.org/10.1371/journal.pgen.1001064
  • Dabert M. 2006. DNA markers in the phylogenetics of the Acari. Biological Lett, 43: 97-107.
  • Dabert M., Witalinski W., Kazmierski A., Olszanowski Z., Dabert J. 2010. Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol Phylogenet Evol, 56: 222-241. https://doi.org/10.1016/j.ympev.2009.12.020
  • Degenhardt J., Kollner T.G., Gershenzon J. 2009. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochem, 70: 1621-1637. https://doi.org/10.1016/j. phytochem.2009.07.030
  • Dej K.J., Gerasimova T., Corces V.G., Boeke J.D. 1998. A hotspot for the Drosophila gypsy retroelement in the ovo locus. Nucleic Acids Res, 26: 4019-4024. https://doi.org/10.1093/nar/26.17.4019
  • Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29: 15-21. https://doi.org/10. 1093/bioinformatics/bts635
  • Domes K., Althammer M., Norton R.A., Scheu S., Maraun M. 2007. The phylogenetic relationship between Astigmata and Oribatida (Acari) as indicated by molecular markers. Exp Appl Acarol, 42: 159-171. https://doi.org/10.1007/s10493-007-9088-8
  • Dong X., Armstrong S.D., Xia D., Makepeace B.L., Darby A.C., Kadowaki T. 2017. Draft genome of the honey bee ectoparasitic mite, Tropilaelaps mercedesae, is shaped by the parasitic life history. GigaScience, 6: gix008. https://doi.org/10.1093/gigascience/gix008
  • Dong X., Chaisiri K., Xia D., Armstrong S.D., Fang Y., Donnelly M.J., Kadowaki T., McGarry J.W., Darby A.C., Makepeace B.L. 2018. Genomes of trombidid mites reveal novel predicted allergens and laterally transferred genes associated with secondary metabolism. GigaScience, 7: giy127. https://doi.org/10.1093/gigascience/giy127
  • dos Santos G., Schroeder A.J., Goodman J.L., Strelets V.B., Crosby M.A., Thurmond J., Emmert D.B., Gelbart W.M., Consortium F. 2015. FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Res, 43: D690-D697. https://doi.org/10.1093/nar/gku1099
  • Dunlop J., Alberti G. 2008. The affinities of mites and ticks: a review. J Zool Syst Evol Res, 46: 1-18.
  • Dunlop J., Selden P. 1998. The early history and phylogeny of the chelicerates. In: Fortey R.A., Thomas R.H., (Eds). Arthropod Relationships. The Systematics Association Special Volume Series. Dordrecht: Springer. p. 221-235. https://doi.org/10.1007/978-94-011-4904-4_17
  • Dunlop J.A. 2010. Geological history and phylogeny of Chelicerata. Arthropod Struct Dev, 39: 124-142. https://doi.org/10.1016/j.asd.2010.01.003
  • Dunlop J.A., Lamsdell J.C. 2017. Segmentation and tagmosis in Chelicerata. Arthropod Struct Dev, 46: 395-418. https://doi.org/10.1016/j.asd.2016.05.002
  • Eddy S.R. 2011. Accelerated profile HMM searches. PLoS Comp Biol, 7: e1002195. https://doi.org/10. 1371/journal.pcbi.1002195
  • Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
  • Eisenreich W., Bacher A., Arigoni D., Rohdich F. 2004. Biosynthesis of isoprenoids via the nonmevalonate pathway. Cellular and molecular life sciences : CMLS, 61: 1401-1426. https://doi.org/10. 1007/s00018-004-3381-z
  • Emms D.M., Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol, 16: 157. https://doi.org/10.1186/ s13059-015-0721-2
  • Eriksson B.J., Fredman D., Steiner G., Schmid A. 2013. Characterisation and localisation of the opsin protein repertoire in the brain and retinas of a spider and an onychophoran. BMC Evol Biol, 13: 186. https://doi.org/10.1186/1471-2148-13-186
  • Evans G.O. 1992. Principles of Acarology. Wallingford: CAB International. pp. 563.
  • Exner S. 1989. The physiology of the compound eyes of insects and crustaceans. Berlin, Heidelberg: Springer-Verlag GmbH & Co. KG. pp. 177. https://doi.org/10.1007/978-3-642-83595-7
  • Faddeeva-Vakhrusheva A., Derks M.F., Anvar S.Y., Agamennone V., Suring W., Smit S., van Straalen N.M., Roelofs D. 2016. Gene family evolution reflects adaptation to soil environmental stressors in the genome of the collembolan Orchesella cincta. Genome Biol Evol, 8: 2106-2117. https: //doi.org/10.1093/gbe/evw134
  • Faddeeva-Vakhrusheva A., Kraaijeveld K., Derks M.F., Anvar S.Y., Agamennone V., Suring W., Kampfraath A.A., Ellers J., Le Ngoc G., van Gestel C.A. 2017. Coping with living in the soil:
  • Finnegan D.J. 1989. Eukaryotic transposable elements and genome evolution. Trends Genet, 5: 103-107. https://doi.org/10.1016/0168-9525(89)90039-5
  • R., Aury J.-M. 2013. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature, 500: 453-457. https://doi.org/10.1038/nature12326
  • Fu L., Niu B., Zhu Z., Wu S., Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28: 3150-3152. https://doi.org/10.1093/bioinformatics/bts565
  • Gainett G., Ballesteros J.A., Kanzler C.R., Zehms J.T., Zern J.M., Aharon S., Gavish-Regev E., Sharma P.P. 2020. Systemic paralogy and function of retinal determination network homologs in arachnids.
  • Gilbert H.J. 2010. The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol
  • Giribet G., Edgecombe G.D. 2019. The phylogeny and evolutionary history of arthropods. Curr Biol, 29: R592-R602. https://doi.org/10.1016/j.cub.2019.04.057
  • Gladyshev E.A., Meselson M., Arkhipova I.R. 2008. Massive horizontal gene transfer in bdelloid rotifers. Science, 320: 1210-1213. https://doi.org/10.1126/science.1156407
  • Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q. 2011. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotech, 29: 644. https://doi.org/10.1038/nbt.1883
  • Grbic M., Van Leeuwen T., Clark R.M., Rombauts S., Rouze P., Grbic V., Osborne E.J., Dermauw W., Ngoc P.C.T., Ortego F. 2011. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479: 487-492. https://doi.org/10.1038/nature10640
  • Greenhalgh R., Dermauw W., Glas J.J., Rombauts S., Wybouw N., Thomas J., Alba J.M., Pritham E.J., Legarrea S., Feyereisen R. 2020. Genome streamlining in a minute herbivore that manipulates its host plant. Elife, 9: e56689. https://doi.org/10.7554/eLife.56689
  • Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol, 59: 307-321. https://doi.org/10.1093/sysbio/syq010
  • Gulia-Nuss M., Nuss A.B., Meyer J.M., Sonenshine D.E., Roe R.M., Waterhouse R.M., Sattelle D.B., De La Fuente J., Ribeiro J.M., Megy K. 2016. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature communications, 7: 1-13.
  • D., Li B., Lieber M. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc., 8: 1494-1512. https: //doi.org/10.1038/nprot.2013.084
  • Haas B.J., Salzberg S.L., Zhu W., Pertea M., Allen J.E., Orvis J., White O., Buell C.R., Wortman J.R. 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol., 9: R7. https://doi.org/10.1186/gb-2008-9-1-r7
  • Haq M.A. 1993. Symbiotic association of mites and microbes in cellulose degradation. Soil Org Sustain,
  • Hartmann K., Laumann M., Bergmann P., Heethoff M., Schmelzle S. 2016. Development of the synganglion and morphology of the adult nervous system in the mite Archegozetes longisetosus Aoki (Chelicerata, Actinotrichida, Oribatida). J Morphol, 277: 537-48. https://doi.org/10.1002/jmor.20517
  • Harzsch S., Vilpoux K., Blackburn D.C., Platchetzki D., Brown N.L., Melzer R., Kempler K.E., Battelle B.A. 2006. Evolution of arthropod visual systems: development of the eyes and central visual pathways in the horseshoe crab Limulus polyphemus Linnaeus, 1758 (Chelicerata, Xiphosura). Dev Dyn, 235: 2641-2655. https://doi.org/10.1002/dvdy.20866
  • Havecker E.R., Gao X., Voytas D.F. 2004. The diversity of LTR retrotransposons. Genome Biol, 5: 1-6. https://doi.org/10.1186/gb-2004-5-6-225
  • Heethoff M. 2012. Regeneration of complex oil-gland secretions and its importance for chemical defense in an oribatid mite. J Chem Ecol, 38: 1116-23. https://doi.org/10.1007/s10886-012-0169-8
  • Heethoff M., Bergmann P., Laumann M., Norton R.A. 2013. The 20th anniversary of a model mite: A review of current knowledge about Archegozetes longisetosus(Acari, Oribatida). Acarologia, 53: 353-368. https://doi.org/10.1051/acarologia/20132108
  • Heethoff M., Bergmann P., Norton R.A. 2006. Karyology and sex determination of oribatid mites. Acarologia, 46: 127-131.
  • Heethoff M., Bruckner A., Schmelzle S., Schubert M., Brauer M., Meusinger R., Dotterl S., Norton R.A., Raspotnig G. 2018. Life as a fortress-structure, function, and adaptive values of morphological and chemical defense in the oribatid mite Euphthiracarus reticulatus (Actinotrichida). BMC Zoology, 3: 7. https://doi.org/10.1186/s40850-018-0031-8
  • Heethoff M., Koerner L. 2007. Small but powerful: the oribatid mite Archegozetes longisetosus Aoki (Acari, Oribatida) produces disproportionately high forces. J Exp Biol, 210: 3036-3042. https://doi.org/10.1242/jeb.008276
  • Heethoff M., Koerner L., Norton R.A., Raspotnig G. 2011a. Tasty but protected-first evidence of chemical defense in oribatid mites. J Chem Ecol, 37: 1037-1043. https://doi.org/10.1007/s10886-011-0009-2
  • Heethoff M., Laumann M., Bergmann P. 2007. Adding to the reproductive biology of the parthenogenetic oribatid mite, Archegozetes longisetosus(Acari, Oribatida, Trhypochthoniidae). Turk J Zool, 31: 151-159.
  • Heethoff M., Laumann M., Weigmann G., Raspotnig G. 2011b. Integrative taxonomy: Combining morphological, molecular and chemical data for species delineation in the parthenogenetic Trhypochthonius tectorum complex (Acari, Oribatida, Trhypochthoniidae). Front Zool, 8: 2. https://doi.org/10.1186/1742-9994-8-2
  • Heethoff M., Norton R.A. 2009. A new use for synchrotron X-ray microtomography: three-dimensional biomechanical modeling of chelicerate mouthparts and calculation of theoretical bite forces. Inver
  • Biol, 128: 332-339. https://doi.org/10.1111/j.1744-7410.2009.00183.x
  • Heethoff M., Norton R.A., Raspotnig G. 2016. Once Again: Oribatid Mites and Skin Alkaloids in Poison
  • Heethoff M., Norton R.A., Scheu S., Maraun M. 2009. Parthenogenesis in Oribatid Mites (Acari, Oribatida): Evolution Without Sex. In: Schon I., Martens K., van Dijk P., (Eds). Lost Sex: The Evolutionary Biology of Parthenogenesis. Dordrecht: Springer. p. 241-257. https://doi.org/10.1007/ 978-90-481-2770-2_12
  • Heethoff M., Rall B.C. 2015. Reducible defence: chemical protection alters the dynamics of predator-prey interactions. Chemoecology, 25: 53-61. https://doi.org/10.1007/s00049-014-0184-z
  • Heethoff M., Raspotnig G. 2012. Expanding the 'enemy-free space' for oribatid mites: evidence for chemical defense of juvenile Archegozetes longisetosus against the rove beetle Stenus juno. Exp Appl Acarol, 56: 93-97. https://doi.org/10.1007/s10493-011-9501-1
  • Heidemann K., Scheu S., Ruess L., Maraun M. 2011. Molecular detection of nematode predation and scavenging in oribatid mites: Laboratory and field experiments. Soil Biol Biochem, 43: 229-236. https://doi.org/10.1016/j.soilbio.2011.07.015
  • Heingard M., Turetzek N., Prpic N.-M., Janssen R. 2019. FoxB, a new and highly conserved key factor in arthropod dorsal-ventral (DV) limb patterning. EvoDevo, 10: 1-16. https://doi.org/10.1186/ s13227-019-0141-6
  • Hoffmann A., Thimm T., Droge M., Moore E.R., Munch J.C., Tebbe C.C. 1998. Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collembola). Appl Environ Microbiol, 64: 2652-2659. https://doi.org/10.1128/AEM. 64.7.2652-2659.1998
  • Holland P., Hogan B. 1988. Expression of homeo box genes during mouse development: a review. Gene Devol, 2: 773-782. https://doi.org/10.1101/gad.2.7.773
  • Hoy M.A., Waterhouse R.M., Wu K., Estep A.S., Ioannidis P., Palmer W.J., Pomerantz A.F., Simao F.A., Thomas J., Jiggins F.M. 2016. Genome sequencing of the phytoseiid predatory mite Metaseiulus occidentalis reveals completely atomized Hox genes and superdynamic intron evolution. Genome
  • Biol Evol, 8: 1762-1775. https://doi.org/10.1093/gbe/evw048
  • Hrycaj S.M., Wellik D.M. 2016. Hox genes and evolution. F1000Research, 5. https://doi.org/10.12688/ f1000research.7663.1
  • Huerta-Cepas J., Forslund K., Coelho L.P., Szklarczyk D., Jensen L.J., Von Mering C., Bork P. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol.
  • Evol., 34: 2115-2122. https://doi.org/10.1093/molbev/msx148
  • Hughes C.L., Kaufman T.C. 2002. Hox genes and the evolution of the arthropod body plan. Evol Dev, 4: 459-499. https://doi.org/10.1046/j.1525-142X.2002.02034.x
  • Jeyaprakash A., Hoy M.A. 2009. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp Appl Acarol, 47: 1-18. https://doi.org/10.1007/s10493-008-9203-5
  • S., Tokimatsu T. 2007. KEGG for linking genomes to life and the environment. Nucleic Acids Res,
  • Kanehisa M., Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28:
  • Kanehisa M., Sato Y., Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol, 428: 726-731. https://doi.org/10. 1016/j.jmb.2015.11.006
  • Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 30: 772-780. https://doi.org/10.1093/molbev/mst010
  • Keilwagen J., Hartung F., Grau J. 2019. GeMoMa: Homology-based gene prediction utilizing intron position conservation and RNA-seq data. Gene Prediction. Amsterdam: Springer. p. 161-177. https://doi.org/10.1007/978-1-4939-9173-0_9
  • Kitchen S.A., Crowder C.M., Poole A.Z., Weis V.M., Meyer E. 2015. De novo assembly and characterization of four anthozoan (Cnidaria) transcriptomes. G3, 5: 2441-2452. https://doi.org/10.1534/g3.115. 020164
  • Klimov P.B., OConnor B. 2013. Is permanent parasitism reversible?-Critical evidence from early evolution of house dust mites. Syst Biol, 62: 411-423. https://doi.org/10.1093/sysbio/syt008
  • Klimov P.B., OConnor B.M., Chetverikov P.E., Bolton S.J., Pepato A.R., Mortazavi A.L., Tolstikov A.V., Bauchan G.R., Ochoa R. 2018. Comprehensive phylogeny of acariform mites (Acariformes) provides insights on the origin of the four-legged mites (Eriophyoidea), a long branch. Mol Phylogenet Evol,
  • Knecht Z.A., Silbering A.F., Ni L., Klein M., Budelli G., Bell R., Abuin L., Ferrer A.J., Samuel A.D., Benton R. 2016. Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila. eLife, 5: e17879. https://doi.org/10.7554/eLife.17879
  • Kocot K.M., Citarella M.R., Moroz L.L., Halanych K.M. 2013. PhyloTreePruner: a phylogenetic tree-
  • Kohany O., Gentles A.J., Hankus L., Jurka J. 2006. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics, 7: 1-7. https://doi.org/10. 1186/1471-2105-7-474
  • Koller L.M., Wirth S., Raspotnig G. 2012. Geranial-rich oil gland secretions: a common phenomenon in the Histiostomatidae (Acari, Astigmata)? Int J Acarol, 38: 420-426. https://doi.org/10.1080/01647954. 2012.662247
  • Konigsmann T., Turetzek N., Pechmann M., Prpic N.-M. 2017. Expression and function of the zinc finger transcription factor Sp6-9 in the spider Parasteatoda tepidariorum. Dev Genes Evol, 227: 389-400. https://doi.org/10.1007/s00427-017-0595-2
  • Koren S., Walenz B.P., Berlin K., Miller J.R., Bergman N.H., Phillippy A.M. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res, 27: 722-736. https://doi.org/10.1101/gr.215087.116
  • Koyanagi M., Nagata T., Katoh K., Yamashita S., Tokunaga F. 2008. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders. J Mol Evol, 66: 130-137. https://doi.org/10.1007/s00239-008-9065-9
  • Kuck P., Meusemann K. 2010. FASconCAT: Convenient handling of data matrices. Mol. Phylogenet.
  • Evol., 56: 1115-1118. https://doi.org/10.1016/j.ympev.2010.04.024
  • Kuwahara Y. 2004. Chemical ecology of astigmatid mites. In: Carde R.T., Millar J.G., (Eds). Advances in Insect Chemical Ecology. Cambridge: Cambridge University Press. p. 76-109. https://doi.org/10. 1017/CBO9780511542664.004
  • 2001. Chemical ecology of astigmatid mites LIX. Neral, the alarm pheromone of Schwiebea elongata (Banks)(Acari: Acaridae). J Acarol Soc Japan, 10: 19-25. https://doi.org/10.2300/acari.10.19
  • Laetsch D.R., Blaxter M.L. 2017. BlobTools: Interrogation of genome assemblies. F1000Research, 6:
  • 1287. https://doi.org/10.12688/f1000research.12232.1
  • Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.
  • Latge J.P. 2007. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol, 66: 279-290. https://doi.org/10.1111/j.1365-2958.2007.05872.x
  • Lawrence J.G. 1997. Selfish operons and speciation by gene transfer. Trends Microbiol, 5: 355-359. https://doi.org/10.1016/S0966-842X(97)01110-4
  • Lefort V., Longueville J.-E., Gascuel O. 2017. SMS: smart model selection in PhyML. Mol Biol Evol, 34: 2422-2424. https://doi.org/10.1093/molbev/msx149
  • Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34: 3094-3100. https://doi.org/10.1093/bioinformatics/bty191
  • Li H., Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25: 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
  • Li W.-N., Xue X.-F. 2019. Mitochondrial genome reorganization provides insights into the relationship between oribatid mites and astigmatid mites (Acari: Sarcoptiformes: Oribatida). Zoolo J Lin Soc,
  • Liana M., Witalinski W. 2005. Sperm structure and phylogeny of Astigmata. J Morphol, 265: 318-324. https://doi.org/10.1002/jmor.10361
  • Liu W., Zhang R., Tian N., Xu X., Cao Y., Xian M., Liu H. 2015. Utilization of alkaline phosphatase
  • Lozano-Fernandez J., Tanner A.R., Giacomelli M., Carton R., Vinther J., Edgecombe G.D., Pisani D. 2019. Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nature Comm, 10: 1-8. https://doi.org/10.1038/s41467-019-10244-7
  • Luxton M. 1972. Studies on oribatid mites of a Danish beech wood soil .1. Nutritional Biology. Pedobiologia, 12: 434-463.
  • Luxton M. 1979. Food and energy processing by oribatid mites. Rev Ecol Biol Sol, 16: 103-111.
  • Luxton M. 1981. Studies on the oribatid mites of a Danish beech wood soil .7. Energy Budgets. Pedobiologia, 22: 77-111.
  • Luxton M. 1982. The bology of mites from beech woodland soil. Pedobiologia, 23: 1-8.
  • Madge D. 1965. Further studies on the behaviour of Belba geniculosa Oudms. in relation to various environmental stimuli. Acarologia, 7: 744-757.
  • Maraun M., Erdmann G., Fischer B.M., Pollierer M.M., Norton R.A., Schneider K., Scheu S. 2011. Stable isotopes revisited: Their use and limits for oribatid mite trophic ecology. Soil Biol Biochem, 43: 877-882. https://doi.org/10.1016/j.soilbio.2011.01.003
  • R.A. 2004. Molecular phylogeny of oribatid mites (Oribatida, Acari): evidence for multiple radiations of parthenogenetic lineages. Exp Appl Acarol, 33: 183-201. https://doi.org/10.1023/B: APPA.0000032956.60108.6d
  • Maraun M., Schatz H., Scheu S. 2007. Awesome or ordinary? Global diversity patterns of oribatid mites. Ecography, 30: 209-216. https://doi.org/10.1111/j.0906-7590.2007.04994.x
  • Maraun M., Scheu S. 2000. The structure of oribatid mite communities (Acari, Oribatida): Patterns, mechanisms and implications for future research. Ecography, 23: 374-383. https://doi.org/10.1034/j. 1600-0587.2000.d01-1647.x
  • Marcais G., Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27: 764-770. https://doi.org/10.1093/bioinformatics/btr011
  • Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet
  • Mayer W.E., Schuster L.N., Bartelmes G., Dieterich C., Sommer R.J. 2011. Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover. BMC Evol Biol, 11: 1-10. https://doi.org/10.1186/1471-2148-11-13
  • McKenna D.D., Scully E.D., Pauchet Y., Hoover K., Kirsch R., Geib S.M., Mitchell R.F., Waterhouse R.M., Ahn S.-J., Arsala D. 2016. Genome of the Asian longhorned beetle ( Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol, 17: 1-18. https://doi.org/10.1186/s13059-016-1088-8
  • McKenna D.D., Shin S., Ahrens D., Balke M., Beza-Beza C., Clarke D.J., Donath A., Escalona H.E., Friedrich F., Letsch H. 2019. The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences, 116: 24729-24737. https://doi.org/10.1073/pnas.1909655116
  • Mitreva M., Smant G., Helder J. 2009. Role of horizontal gene transfer in the evolution of plant parasitism among nematodes. Horizontal Gene Transfer. Amsterdam: Springer. p. 517-535. https://doi.org/10.1007/978-1-60327-853-9_30
  • Miziorko H.M. 2011. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem
  • Montell C. 2009. A taste of the Drosophila gustatory receptors. Curr Opin Neurobiol, 19: 345-353. https://doi.org/10.1016/j.conb.2009.07.001
  • Morita A., Mori N., Nishida R., Hirai N., Kuwahara Y. 2004. Neral biosynthesis via the mevalonate pathway, evidenced by D-glucose-1-13C feeding in Carpoglyphus lactis and 13C incorporation into other opisthonotal gland exudates. J Pest Sci, 29: 27-32. https://doi.org/10.1584/jpestics.29.27
  • Moriya Y., Itoh M., Okuda S., Yoshizawa A.C., Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res, 35: W182-W185. https://doi.org/10. 1093/nar/gkm321
  • Muller H.J. 1964. The relation of recombination to mutaional advance. Mutation Res 106: 2-9. https://doi.org/10.1016/0027-5107(64)90047-8
  • Nagata T., Koyanagi M., Tsukamoto H., Terakita A. 2010. Identification and characterization of a protostome homologue of peropsin from a jumping spider. J Comp Physiol A, 196: 51. https://doi.org/10.1007/s00359-009-0493-9
  • Nagy L.G., Merenyi Z., Hegedus B., Balint B. 2020. Novel phylogenetic methods are needed for understanding gene function in the era of mega-scale genome sequencing. Nucleic Acids Res, 48: 2209-2219. https://doi.org/10.1093/nar/gkz1241
  • Peer Y., Van Leeuwen T., Rouze P. 2016. Complex evolutionary dynamics of massively expanded chemosensory receptor families in an extreme generalist chelicerate herbivore. Genome Biol Evol, 8: 3323-3339. https://doi.org/10.1093/gbe/evw249
  • Nguyen L.-T., Schmidt H.A., Von Haeseler A., Minh B.Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 32: 268-274. https://doi.org/10.1093/molbev/msu300
  • Niimura Y., Nei M. 2005. Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods.
  • Noge K., Kato M., Iguchi T., Mori N., Nishida R., Kuwahara Y. 2005. Biosynthesis of neral in Carpoglyphus lactis(Acari: Carpoglyphidae) and detection of its key enzyme, geraniol dehydrogenase, by electrophoresis. J Acarol Soc Japan, 14: 75-81. https://doi.org/10.2300/acari.14.75
  • Noge K., Kato M., Mori N., Kataoka M., Tanaka C., Yamasue Y., Nishida R., Kuwahara Y. 2008. Geraniol dehydrogenase, the key enzyme in biosynthesis of the alarm pheromone, from the astigmatid mite Carpoglyphus lactis (Acari: Carpoglyphidae). The FEBS journal, 275: 2807-2817. https: //doi.org/10.1111/j.1742-4658.2008.06421.x
  • Norton R.A. 1994. Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In: Houck M.A., (Ed). Mites: Ecological and Evolutionary Analyses of Life-History Patterns. New York: Chapman & Hall. p. 99-135. https://doi.org/10.1007/978-1-4615-2389-5_5
  • Norton R.A. 1998. Morphological evidence for the evolutionary origin of Astigmata (Acari : Acariformes).
  • Norton R.A., Franklin E. 2018. Paraquanothrus n. gen. from freshwater rock pools in the USA, with new diagnoses of Aquanothrus, Aquanothrinae, and Ameronothridae (Acari, Oribatida). Acarologia,
  • Norton R.A., Fuangarworn M. 2015. Nanohystricidae n. fam., an unusual, plesiomorphic enarthronote mite family endemic to New Zealand (Acari, Oribatida). Zootaxa, 4027: 151-204. https://doi.org/10. 11646/zootaxa.4027.2.1
  • Norton R.A., Kethley J.B., Johnston D.E., O'Connor B.M. 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch D., Ebbert M., (Eds). Evolution and Diversity of Sex Ratio in Insects and Mites. London: Chapman & Hall. p. 8-99. https://doi.org/10.1007/ 978-1-4684-1402-8_2
  • Norton R.A., Palmer S.C. 1991. The distribution, mechanisms and evolutionary significance of parthenogenesis in oribatid mites. In: Schuster R., Murphy P.W., (Eds). The Acari - Reproduction, Development and Life-History Strategies. London: Chapman & Hall. p. 107-136. https://doi.org/10. 1007/978-94-011-3102-5_7
  • Nuzhdin S.V., Petrov D.A. 2003. Transposable elements in clonal lineages: lethal hangover from sex.
  • Biol J Lin Soc, 79: 33-41. https://doi.org/10.1046/j.1095-8312.2003.00188.x
  • Oldfield E., Lin F.Y. 2012. Terpene biosynthesis: modularity rules. Angew Chem Int Ed Engl, 51: 1124-1137. https://doi.org/10.1002/anie.201103110
  • Oliver Jr J.H. 1983. Chromosomes, genetic variance and reproductive strategies among mites and ticks. Bull Entomol Soc Am, 29: 8-17. https://doi.org/10.1093/besa/29.2.8
  • Oswald M., Fischer M., Dirninger N., Karst F. 2007. Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 7: 413-421. https://doi.org/10.1111/j.1567-1364.2006.00172.x
  • Oxley P.R., Ji L., Fetter-Pruneda I., McKenzie S.K., Li C., Hu H., Zhang G., Kronauer D.J. 2014. The genome of the clonal raider ant Cerapachys biroi. Curr Biol, 24: 451-458. https://doi.org/10.1016/j.cub. 2014.01.018
  • Pace R.M., Grbic M., Nagy L.M. 2016. Composition and genomic organization of arthropod Hox clusters. EvoDevo, 7: 11. https://doi.org/10.1186/s13227-016-0048-4
  • Pachl P., Domes K., Schulz G., Norton R.A., Scheu S., Schaefer I., Maraun M. 2012. Convergent evolution of defense mechanisms in oribatid mites (Acari, Oribatida) shows no "ghosts of predation past". Mol Phylogenet Evol, 65: 412-420. https://doi.org/10.1016/j.ympev.2012.06.030
  • Palmer J., Stajich J. 2017. Funannotate: eukaryotic genome annotation pipeline. https://funannotate. readthedocs.io/en/latest/.
  • Palmer M., Bantle J., Guo X., Fargoxy1 W.S. 1994. Genome size and organization in the ixodid tick Amblyomma americanum (L.). Insect Mol Biol, 3: 57-62. https://doi.org/10.1111/j.1365-2583.1994. tb00151.x
  • Palmer S.C., Norton R.A. 1992. Genetic diversity in thelytokous oribatid mites (Acari? Acariformes: Desmonomata). Biochem Syst Ecol, 20: 219-231. https://doi.org/10.1016/0305-1978(92)90056-J
  • Panfilio K.A., Jentzsch I.M.V., Benoit J.B., Erezyilmaz D., Suzuki Y., Colella S., Robertson H.M., Poelchau M.F., Waterhouse R.M., Ioannidis P. 2019. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol, 20: 64. https://doi.org/10.1186/s13059-019-1660-0
  • Patten W. 1887. Eyes of molluscs and arthropods. J Morphol, 1: 67-92. https://doi.org/10.1002/jmor. 1050010105
  • Pepato A., Klimov P. 2015. Origin and higher-level diversification of acariform mites-evidence from nuclear ribosomal genes, extensive taxon sampling, and secondary structure alignment. BMC Evol Biol, 15: 178. https://doi.org/10.1186/s12862-015-0458-2
  • B. 2019. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. BMC Evol. Biol., 19: 11. https://doi.org/10.1186/s12862-018-1324-9
  • Pimentel H., Bray N.L., Puente S., Melsted P., Pachter L. 2017. Differential analysis of RNA-seq incorporating quantification uncertainty. Nature Meth 14: 687. https://doi.org/10.1038/nmeth.4324
  • Price M.N., Dehal P.S., Arkin A.P. 2010. FastTree 2 - approximately Maximum-Likelihood trees for large alignments. PLoS One, 5: e9490. https://doi.org/10.1371/journal.pone.0009490
  • Pruitt K.D., Tatusova T., Maglott D.R. 2005. NCBI Reference Sequence (RefSeq): a curated nonredundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res, 33: D501-D504. https://doi.org/10.1093/nar/gki025
  • Quinlan A.R., Hall I.M. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26: 841-842. https://doi.org/10.1093/bioinformatics/btq033
  • Quinodoz S.A., Bhat P., Chovanec P., Jachowicz J.W., Ollikainen N., Detmar E., Soehalim E., Guttman M. 2022. SPRITE: a genome-wide method for mapping higher-order 3D interactions in the nucleus using combinatorial split-and-pool barcoding. Nat Protoc: 1-41. https://doi.org/10.1038/s41596-021-00633-y
  • R_Core_Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019.
  • Ramirez F., Bhardwaj V., Arrigoni L., Lam K.C., Gruning B.A., Villaveces J., Habermann B., Akhtar A., Manke T. 2018. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nature communications, 9: 1-15. https://doi.org/10.1038/s41467-017-02525-w
  • Raspotnig G. 2006. Chemical alarm and defence in the oribatid mite Collohmannia gigantea(Acari: Oribatida). Exp Appl Acarol, 39: 177-194. https://doi.org/10.1007/s10493-006-9015-4
  • Raspotnig G., Kaiser R., Stabentheiner E., Leis H.J. 2008. Chrysomelidial in the Opisthonotal Glands of the Oribatid Mite, Oribotritia berlesei. J Chem Ecol, 34: 1081-1088. https://doi.org/10.1007/ s10886-008-9508-1
  • Raspotnig G., Norton R.A., Heethoff M. 2011. Oribatid mites and skin alkaloids in poison frogs. Biol
  • Raspotnig G., Schuster R., Krisper G. 2004. Citral in oil gland secretions of Oribatida (Acari): a key component for phylogenetic analyses. Abh Ber Naturkundemus Gorlitz, 76: 43-50.
  • Rawlings N.D., Barrett A.J., Bateman A. 2010. MEROPS: the peptidase database. Nucleic Acids Res,
  • Regier J.C., Shultz J.W., Zwick A., Hussey A., Ball B., Wetzer R., Martin J.W., Cunningham C.W. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature, 463: 1079-1083. https://doi.org/10.1038/nature08742
  • Renschler G., Richard G., Valsecchi C.I.K., Toscano S., Arrigoni L., Ramirez F., Akhtar A. 2019. Hi-C guided assemblies reveal conserved regulatory topologies on X and autosomes despite extensive genome shuffling. Genes & development, 33: 1591-1612. https://doi.org/10.1101/gad.328971.119
  • Richards S. 2019. Arthropod genome sequencing and assembly strategies. Insect Genomics: 1-14. https://doi.org/10.1007/978-1-4939-8775-7_1
  • Rider S.D., Morgan M.S., Arlian L.G. 2015. Draft genome of the scabies mite. Parasite Vectors, 8: 1-14. https://doi.org/10.1186/s13071-015-1198-2
  • Riha G. 1951. Zur Okologie der Oribatiden in Kalksteinboden. Zoolo Jahrb, 80: 407-450.
  • Roach M.J., Schmidt S.A., Borneman A.R. 2018. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC bioinformatics, 19: 1-10. https://doi.org/10.1186/ s12859-018-2485-7
  • Robertson H.M., Wanner K.W. 2006. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res, 16: 1395-1403. https://doi.org/10.1101/gr.5057506
  • Robertson H.M., Warr C.G., Carlson J.R. 2003. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. PNAS, 100: 14537-14542. https://doi.org/10.1073/pnas. 2335847100
  • Robinson J.T., Thorvaldsdottir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. 2011. Integrative genomics viewer. Nat. Biotechnol., 29: 24-26. https://doi.org/10.1038/nbt.1754
  • Rognes T., Flouri T., Nichols B., Quince C., Mahe F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4: e2584. https://doi.org/10.7717/peerj.2584
  • Rytz R., Croset V., Benton R. 2013. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem Mol Biol, 43: 888-897. https://doi.org/10.1016/j. ibmb.2013.02.007
  • Sakata T. 1997. Natural Chemistry of Mite Secretions. [Kyoto, Japan]: Kyoto University. pp. 153.
  • Sakata T., Norton R.A. 2001. Opisthonotal gland chemistry of early-derivative oribatid mites (Acari)
  • Sakata T., Norton R.A. 2003. Opisthonotal gland chemistry of a middle-derivative oribatid mite, Archegozetes longisetosus(Acari : Trhypochthoniidae). Int J Acarol, 29: 345-350. https://doi.org/10. 1080/01647950308684351
  • Sakata T., Tagami K., Kuwahara Y. 1995. Chemical ecology of oribatid mites. I. Oil gland components of Hydronothrus crispus Aoki. J Acarol Soc Japan, 4: 69-75. https://doi.org/10.2300/acari.4.69
  • Samadi L., Schmid A., Eriksson B.J. 2015. Differential expression of retinal determination genes in the principal and secondary eyes of Cupiennius salei Keyserling (1877). EvoDevo, 6: 16. https://doi.org/10.1186/s13227-015-0010-x
  • Sanchez-Gracia A., Vieira F., Rozas J. 2009. Molecular evolution of the major chemosensory gene families in insects. Heredity, 103: 208-216. https://doi.org/10.1038/hdy.2009.55
  • Sanchez-Gracia A., Vieira F.G., Almeida F.C., Rozas J. 2011. Comparative genomics of the major chemosensory gene families in Arthropods. eLS. https://doi.org/10.1002/9780470015902.a0022848
  • H.M., Feitosa N.M., Logullo C. 2013. The embryogenesis of the tick Rhipicephalus (Boophilus) microplus: the establishment of a new chelicerate model system. Genesis, 51: 803-818. https: //doi.org/10.1002/dvg.22717
  • Saporito R.A., Donnelly M.A., Norton R.A., Garraffo H.M., Spande T.F., Daly J.W. 2007. Oribatid mites as a major dietary source for alkaloids in poison frogs. PNAS, 104: 8885-8890. https: //doi.org/10.1073/pnas.0702851104
  • Saporito R.A., Spande T.F., Garraffo H.M., Donnelly M.A. 2009. Arthropod alkaloids in poison frogs: A review of the dietary hypothesis. Heterocycles, 79: 277-297. https://doi.org/10.3987/REV-08-SR(D)11
  • Schaefer I., Norton R.A., Scheu S., Maraun M. 2010. Arthropod colonization of land - Linking molecules and fossils in oribatid mites (Acari, Oribatida). Mol Phylogenet Evol, 57: 113-121. https://doi.org/10.1016/j.ympev.2010.04.015
  • Schmelzle S., Bluthgen N. 2019. Under pressure: force resistance measurements in box mites (Actinotrichida, Oribatida). Front Zool, 16: 24. https://doi.org/10.1186/s12983-019-0325-x
  • Schneider K., Maraun M. 2005. Feeding preferences among dark pigmented fungal taxa ("Dematiacea") indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia, 49: 61-67. https://doi.org/10.1016/j.pedobi.2004.07.010
  • Schneider K., Migge S., Norton R.A., Scheu S., Langel R., Reineking A., Maraun M. 2004a. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (N-15/N-14). Soil Biol Biochem, 36: 1769-1774. https://doi.org/10.1016/j.soilbio.2004.04.033
  • Schneider K., Renker C., Scheu S., Maraun M. 2004b. Feeding biology of oribatid mites: a minireview. Phytophaga, 14: 247-256.
  • Schomburg C., Turetzek N., Schacht M.I., Schneider J., Kirfel P., Prpic N.-M., Posnien N. 2015. Molecular characterization and embryonic origin of the eyes in the common house spider Parasteatoda tepidariorum. EvoDevo, 6: 1-14. https://doi.org/10.1186/s13227-015-0011-9
  • Schon I., Martens K., van Dijk P. 2009. Lost Sex - The Evolutionary Biology of Parthenogenesis. Dordrecht: Springer. https://doi.org/10.1007/978-90-481-2770-2
  • Schwager E.E., Schonauer A., Leite D.J., Sharma P.P., McGregor A.P. 2015. Chelicerata. Amsterdam: Springer. https://doi.org/10.1007/978-3-7091-1865-8_5
  • Schwager E.E., Sharma P.P., Clarke T., Leite D.J., Wierschin T., Pechmann M., Akiyama-Oda Y., Esposito L., Bechsgaard J., Bilde T. 2017. The house spider genome reveals an ancient wholegenome duplication during arachnid evolution. BMC Biology, 15: 1-27. https://doi.org/10.1186/ s12915-017-0399-x
  • Senthilan P.R., Grebler R., Reinhard N., Rieger D., Helfrich-Forster C. 2019. Role of rhodopsins as circadian photoreceptors in the Drosophila melanogaster. Biology, 8: 6. https://doi.org/10.3390/ biology8010006
  • Senthilan P.R., Helfrich-Forster C. 2016. Rhodopsin 7-the unusual rhodopsin in Drosophila. PeerJ, 4: e2427. https://doi.org/10.7717/peerj.2427
  • Sharma P.P., Schwager E.E., Extavour C.G., Giribet G. 2012. Hox gene expression in the harvestman Phalangium opilio reveals divergent patterning of the chelicerate opisthosoma. Evol Dev, 14: 450-463. https://doi.org/10.1111/j.1525-142X.2012.00565.x
  • Sharma P.P., Tarazona O.A., Lopez D.H., Schwager E.E., Cohn M.J., Wheeler W.C., Extavour C.G. 2015.
  • Shen W.L., Kwon Y., Adegbola A.A., Luo J., Chess A., Montell C. 2011. Function of rhodopsin in temperature discrimination in Drosophila. Science, 331: 1333-1336. https://doi.org/10.1126/science. 1198904
  • Shimano S., Sakata T., Mizutani Y., Kuwahara Y., Aoki J.-i. 2002. Geranial: the alarm pheromone in the nymphal stage of the oribatid mite, Nothrus palustris. J Chem Ecol, 28: 1831-1837. https://doi.org/10.1023/A:1020517319363
  • Shimizu N., Sakata D., Schmelz E.A., Mori N., Kuwahara Y. 2017. Biosynthetic pathway of aliphatic formates via a Baeyer-Villiger oxidation in mechanism present in astigmatid mites. PNAS, 114: 2616-2621. https://doi.org/10.1073/pnas.1612611114
  • Shingate P., Ravi V., Prasad A., Tay B.-H., Garg K.M., Chattopadhyay B., Yap L.-M., Rheindt F.E., Venkatesh B. 2020. Chromosome-level assembly of the horseshoe crab genome provides insights into its genome evolution. Nature Comm, 11: 1-13. https://doi.org/10.1038/s41467-020-16180-1
  • Shultz J.W. 2007. A phylogenetic analysis of the arachnid orders based on morphological characters.
  • Zoolo J Lin Soc, 150: 221-265. https://doi.org/10.1111/j.1096-3642.2007.00284.x
  • Shumate A., Salzberg S.L. 2021. Liftoff: accurate mapping of gene annotations. Bioinformatics, 37: 1639-1643. https://doi.org/10.1093/bioinformatics/btaa1016
  • Siepel A., Bejerano G., Pedersen J.S., Hinrichs A.S., Hou M., Rosenbloom K., Clawson H., Spieth J., Hillier L.W., Richards S. 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034-1050. https://doi.org/10.1101/gr.3715005
  • Siepel H., de Ruiter-Dijkman E.M. 1993. Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biol Biochem, 25: 1491-1497. https://doi.org/10.1016/0038-0717(93)90004-U
  • Simao F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31:
  • Smit A.F., Hubley R. 2008. RepeatModeler Open-1.0.
  • Smrz J. 1992. Some adaptive features in the microanatomy of moss-dwelling oribatid mites (Acari: Oribatida) with respect to their ontogenetical development. Pedobiologia, 36: 306-320.
  • Smrz J. 2000. A modified test for chitinase and cellulase activity in soil mites. Pedobiologia, 44: 186-189. https://doi.org/10.1078/S0031-4056(04)70037-2
  • Smrz J., Catska V. 2010. Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. Symbiosis, 52: 33-40. https://doi.org/10.1007/s13199-010-0099-6
  • Smrz J., Norton R.A. 2004. Food selection and internal processing in Archegozetes longisetosus(Acari : Oribatida). Pedobiologia, 48: 111-120. https://doi.org/10.1016/j.pedobi.2003.09.003
  • Stefaniak O. 1976. The microflora of the alimentary canal of Achipteria coleoptrata (Acarina, Oribatei). Pedobiologia, 16.
  • Stefaniak O. 1981. The effect of fungal diet on the development of Oppia nitens (Acari, Oribatei) and on the microflora of its alimentary tract. Pedobiologia, 21: 202-210.
  • Sun H., Ding J., Piednoel M., Schneeberger K. 2018. findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics, 34: 550-557. https: //doi.org/10.1093/bioinformatics/btx637
  • Suzuki S., Kakuta M., Ishida T., Akiyama Y. 2014. GHOSTX: an improved sequence homology search algorithm using a query suffix array and a database suffix array. PloS One, 9: e103833. https://doi.org/10.1371/journal.pone.0103833
  • Telford M.J., Thomas R.H. 1998. Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. PNAS, 95: 10671-10675. https://doi.org/10.1073/pnas.95.18.10671
  • Ter-Hovhannisyan V., Lomsadze A., Chernoff Y.O., Borodovsky M. 2008. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res., 18: 1979-1990. https://doi.org/10.1101/gr.081612.108
  • Thiel T., Brechtel A., Bruckner A., Heethoff M., Drossel B. 2018. The effect of reservoir-based chemical defense on predator-prey dynamics. Theo Ecol, 12: 365-378. https://doi.org/10.1007/s12080-018-0402-3
  • Thomas G.W., Dohmen E., Hughes D.S., Murali S.C., Poelchau M., Glastad K., Anstead C.A., Ayoub N.A., Batterham P., Bellair M. 2020. Gene content evolution in the arthropods. Genome Biol 21: 1-14. https://doi.org/10.1186/s13059-019-1925-7
  • Thorpe P., Escudero-Martinez C.M., Cock P.J., Eves-van den Akker S., Bos J.I. 2018. Shared transcriptional control and disparate gain and loss of aphid parasitism genes. Genome Biol. Evol., 10: 2716-2733. https://doi.org/10.1093/gbe/evy183
  • Tragardh I. 1933. Methods of automatic collecting for studying the fauna of the soil. Bull Entomol Res,
  • Trapp S.C., Croteau R.B. 2001. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics, 158: 811-832. https://doi.org/10.1093/genetics/158.2.811
  • Van Dam M.H., Trautwein M., Spicer G.S., Esposito L. 2019. Advancing mite phylogenomics: Designing ultraconserved elements for Acari phylogeny. Mol Ecol Res, 19: 465-475. https://doi.org/10.1111/ 1755-0998.12962
  • van der Hammen L. 1970. La segmentation primitive des Acariens. Acarologia, 12: 3-10.
  • Van Zee J.P., Geraci N., Guerrero F., Wikel S., Stuart J., Nene V., Hill C. 2007. Tick genomics: the Ixodes genome project and beyond. Int J Parasitol, 37: 1297-1305. https://doi.org/10.1016/j.ijpara.2007.05.011
  • Vieira F.G., Rozas J. 2011. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome
  • Vurture G.W., Sedlazeck F.J., Nattestad M., Underwood C.J., Fang H., Gurtowski J., Schatz M.C. 2017. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics, 33: 2202-2204. https://doi.org/10.1093/bioinformatics/btx153
  • Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C.A., Zeng Q., Wortman J., Young S.K. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS One, 9: e112963. https://doi.org/10.1371/journal.pone.0112963
  • Walter D.E., Proctor H.C. 1998. Feeding behaviour and phylogeny: observations on early derivative Acari. Exp Appl Acarol, 22: 39-50.
  • Walter D.E., Proctor H.C. 1999. Mites: ecology, evolution, and behaviour. Amsterdam: Springer Netherlands. pp. 494.
  • Waterston R.H., Lindblad-Toh K., Birney E., Rogers J., Abril J.F., Agarwal P., Agarwala R., Ainscough R., Alexandersson M., An P. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature, 420: 520-562. https://doi.org/10.1038/nature01262
  • Weinstein S.B., Kuris A.M. 2016. Independent origins of parasitism in Animalia. Biol Lett, 12: 20160324. https://doi.org/10.1098/rsbl.2016.0324
  • Woodring J. 1966. Color phototactic responses of an eyeless oribatid mite. Acarologia, 8: 382-388.
  • Wrensch D.L., Kethley J.B., Norton R.A. 1994. Cytogenetics of holokinetic chromosomes and inverted meiosis: keys to the evolutionary success of mites, with generalizations on eukaryotes. In: Houck
  • M.A., (Ed). Mites: Ecological and Evolutionary Analyses of Life-History Patterns. New York: Chapman & Hall. p. 282-343. https://doi.org/10.1007/978-1-4615-2389-5_11
  • Wu C., Jordan M.D., Newcomb R.D., Gemmell N.J., Bank S., Meusemann K., Dearden P.K., Duncan E.J., Grosser S., Rutherford K. 2017. Analysis of the genome of the New Zealand giant collembolan (Holacanthella duospinosa) sheds light on hexapod evolution. BMC Genomics, 18: 795. https: //doi.org/10.1186/s12864-017-4197-1
  • Wybouw N., Pauchet Y., Heckel D.G., Van Leeuwen T. 2016. Horizontal gene transfer contributes to the evolution of arthropod herbivory. Genome Biol Evol, 8: 1785-1801. https://doi.org/10.1093/gbe/evw119
  • Wybouw N., Van Leeuwen T., Dermauw W. 2018. A massive incorporation of microbial genes into the genome of Tetranychus urticae, a polyphagous arthropod herbivore. Insect Mol Biol, 27: 333-351. https://doi.org/10.1111/imb.12374
  • Yu G., Wang L.-G., Han Y., He Q.-Y. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16: 284-287. https://doi.org/10.1089/omi.2011.0118
  • Yunker C., Peter T., Norval R., Sonenshine D., Burridge M., Butler J. 1992. Olfactory responses of adult Amblyomma hebraeum and A. variegatum(Acari: Ixodiae) to attractant chemicals in laboratory tests. Exp Appl Acarol, 13: 295-301. https://doi.org/10.1007/BF01195086
  • Zachvatkin A.A. 1941. Tyroglyphoidae (Acari). Moscow: Zoological Institute of the Acaemy of Science of the U.S.S.R.
  • Zhang C., Rabiee M., Sayyari E., Mirarab S. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19: 153. https://doi.org/10. 1186/s12859-018-2129-y
  • Zhou J., Wang C., Yoon S.-H., Jang H.-J., Choi E.-S., Kim S.-W. 2014. Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation. J Biotech, 169: 42-50. https://doi.org/10.1016/j.jbiotec.2013.11.009
  • Zinkler D. 1971. Vergleichende Untersuchungen zum Wirkungsspektrum der Carbohydrasen laubstreubewohnender Oribatiden. Zool Ges Verh: 149-153.