Published October 8, 2022 | Version v1
Dataset Open

MUSES Leaf Area Index (LAI) 16-Day 30m Geographic Grid over Beijing Since 1984

Authors/Creators

  • 1. Beijing Normal University

Description

The MUltiscale Satellite remotE Sensing (MUSES) product suite includes products with different spatial and temporal resolutions for parameters such as Normalized Difference Vegetation Index (NDVI), Near-Infrared Reflectance of Vegetation (NIRv), Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Fractional Vegetation Coverage (FVC), Gross Primary Production (GPP), Net Primary Production (NPP). For more information about the MUSES products, please refer to this website (https://muses.bnu.edu.cn/).

This dataset is the MUSES LAI product at 30 m spatial resolution and 16-day temporal resolution over Beijing. The MUSES LAI product is provided on Geographic grid and spans from 1984 to 2021 (continuously updated). It was generated from time-series Landsat surface reflectance data using general regression neural networks (GRNNs)  (Xiao et al., 2014; Xiao et al., 2016). The MUSES LAI product is spatially complete and temporally continuous.

Dataset Characteristics:

  • Spatial Coverage: 115.416599º E – 117.508219º E, 39.441929º N – 41.059283º N
  • Temporal Coverage: 1984 – 2021
  • Spatial Resolution: 0.000269469º (approximately 30 m)
  • Temporal Resolution: 16 days
  • Projection: Geographic
  • Data Format: HDF
  • Scale: 0.01
  • Valid Range: 0 – 1000

Citation (Please cite this paper whenever these data are used):

  1. Xiao Zhiqiang, Jinling Song, Hua Yang, Rui Sun and Juan Li. (2022). A 250 m resolution global leaf area index product derived from MODIS surface reflectance data. International Journal of Remote Sensing, 43(4), 1199-1225.
  2. Xiao Zhiqiang, et al. (2014). Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance. IEEE Transactions on Geoscience and Remote Sensing, 52, 209-223.
  3. Xiao Zhiqiang, et al. (2016). Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 54, 5301-5318.
  4. Xiao Zhiqiang, et al. (2017). Evaluation of four long time-series global leaf area index products. Agricultural and Forest Meteorology, 246, 218-230.

If you have any questions, please contact Prof. Zhiqiang Xiao (zhqxiao@bnu.edu.cn).

Files

Files (20.9 GB)

Name Size Download all
md5:37659f36dd75e3deb45a31465bad820b
541.5 MB Download
md5:68f7f852c7947883e31f9f2aed41fcae
531.7 MB Download
md5:c6347cc04a3528fd1e6a120fac2dedfc
513.2 MB Download
md5:c71f9fed475bc3b4c42693322afa21d5
539.8 MB Download
md5:48ffd608c2ea94d7c903d678641e1b8b
527.5 MB Download
md5:4fcb3d438970dadc3cdcfa51d5b603c6
536.0 MB Download
md5:53c1924ea7a11b4120e98d5ea769ec61
547.9 MB Download
md5:3ea27cac41febd339ce7bd2421faa1a7
556.5 MB Download
md5:8bd9e6fc004c9eb23830e20aaff5fbc9
525.6 MB Download
md5:fdf014aa4d196d31157c896d32f8caf7
527.7 MB Download
md5:9ffe2c5f6e82dabc3844a38ab1ace727
546.4 MB Download
md5:7a657fb7559f34c513736ca3e824cf68
553.1 MB Download
md5:74277c86c4bb6f9d46b225576f77c833
555.8 MB Download
md5:65466169a7ad74408a058bd1e8c28db6
561.6 MB Download
md5:8037079cbcb65e53c6809a8dbaffb11a
547.6 MB Download
md5:213c2e6f02dc5565340888e9587f3459
544.8 MB Download
md5:ffc2ab68850d6eda8956acc0b3e9ecd9
545.2 MB Download
md5:a34ee7b256a92df258971f8c4181c844
540.0 MB Download
md5:c1d2d1dac0c2d9894fab65421bbc8296
531.7 MB Download
md5:ef0097abea4113c57a98d4b1d951278a
537.7 MB Download
md5:25a416182c75a703008366619a8d45db
533.4 MB Download
md5:58523372497f4c43e9ec53da95825ee2
539.4 MB Download
md5:d618e577cf5e8c5fcc7d75d93a8366e5
521.9 MB Download
md5:19eb091fa38e2fa55d996819eed584fe
534.1 MB Download
md5:683e4320ecfcc847309c7db9720cc9e1
546.4 MB Download
md5:e83b4ea36dbf8ee547ec463c1ab22285
554.3 MB Download
md5:23738d4c6d78bcf56708f3954e58c619
545.2 MB Download
md5:f1814d1760115695ba20257eb0f9f12c
558.3 MB Download
md5:d3a85f014387f23c3eb1c758989f0a47
560.2 MB Download
md5:7e5fcbe432714f86de6fadedabfa65f2
554.1 MB Download
md5:383a8bc4ffab9291f6df145bf627af63
561.5 MB Download
md5:d084824ced1ffa5ba7b76023cbf4f8ca
568.2 MB Download
md5:ac0cbd56c7afccdae20ab156ca128fd2
567.6 MB Download
md5:50004484096ba3252b760dcd95549be7
583.9 MB Download
md5:197165fe58d66eeb2a0cb9099fecba9b
573.7 MB Download
md5:da115d0f8d01b4c7ae9ea5d68139ed97
587.3 MB Download
md5:ad6953a524bc2500d1f2ae07186f0c72
581.5 MB Download
md5:e8e6554449104551170533c80d77cf60
580.9 MB Download