Published September 30, 2022 | Version v1
Journal article Open

Analysis of frequency dependence of complex impedance and electrical characterization of Fe2O3/kaolin ceramics for civil engineering applications

  • 1. Sultan Moulay Slimane university
  • 2. Cadi-Ayyad university
  • 3. High National School of Mines of Rabat

Description

The complex impedance spectroscopy (CIS) method is usually used in order to analyze the electrical response of different semiconducting disordered materials as a function of frequency at different temperatures. The real and imaginary parts of the complex impedance can show different semicircles in the complex plane that give evidence for the presence of both bulk and grain boundary contributions. Many parameters can be deduced from the analysis of CIS data, such as relaxation times and activation energies. There are some literature data concerning electrical properties of clays and (semiconductor, sand, cement,…)/clay mixtures. Most of the published works are related to the AC conductivity of rocks with the effect of water or oil content but there are no similar studies on the characterization of the microstructure of individual clays as ceramic materials by analyzing their temperature and frequency dependence of their electrical conductivities. Hence, this paper presents an analysis of electric complex impedance of the Fe2O3/Kaolin composite in the high temperature range up to 740 °C. Sinusoidal voltage with frequency in the range [100 Hz, 1 MHz] is applied to the material in order to measure the electrical conductivity for various concentrations of Fe2O3 from zero to 100 %. The activation energies for the conduction and for the relaxation processes are determined and their dependence on the density of Fe2O3 analyzed. Furthermore, let's found that Fe2O3 have the effect to increase the electrical conductivity in our samples. From the Nyquist diagrams, only one semi-circle related to the contribution of the grains to the total electrical conduction is identified for all investigated samples.

Files

Analysis of frequency dependence of complex impedance and electrical characterization of Fe2O3_kaolin ceramics for civil engineering applications_zenodo.pdf

Additional details

References

  • Murray, H. H. (1999). Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 39–49. doi: http://doi.org/10.1180/000985599546055
  • Bergaya, F., Lagaly, G.; Bergaya, F. et. al. (Eds.) (2006). Clays, Clay Minerals, and Clay Science, Developments in Clay Science. Handbook of clay science. Amsterdam: Elsevier. doi: http://doi.org/10.1016/s1572-4352(05)01001-9
  • Konta, J. (1995). Clay and man: clay raw materials in the service of man. Applied Clay Science, 10 (4), 275–335. doi: http://doi.org/10.1016/0169-1317(95)00029-4
  • Harvey, C. C., Murray, H. H. (1997). Industrial clays in the 21st century: A perspective of exploration, technology and utilization. Applied Clay Science, 11 (5-6), 285–310. doi: https://doi.org/10.1016/S0169-1317(96)00028-2
  • Wei, L., Zhongyi, F., Jun, W., Qing, H., Hang, D., Xiaojuan, Z., Zhi, Z. (2021). Study on the reusability of kaolin as catalysts for catalytic pyrolysis of low-density polyethylene. Fuel, 302, 121164. doi: https://doi.org/10.1016/j.fuel.2021.121164
  • Xinbin, L., Xiaoyang, X., Weihui, J., Jian, L., Lifeng, M., Qian, W. (2020). Influences of impurities and mineralogical structure of different kaolin minerals on thermal properties of cordierite ceramics for high-temperature thermal storage. Applied Clay Science, 187, 105485. doi: https://doi.org/10.1016/j.clay.2020.105485
  • Murray, H. H. (1991). Overview – clay mineral applications. Applied Clay Science, 5 (5-6), 379–395. doi: https://doi.org/10.1016/0169-1317(91)90014-Z
  • Ababneh, A., Matalkah, F., Matalkeh, B. (2002). Effects of kaolin characteristics on the mechanical properties of alkali-activated binders. Construction and Building Materials, 318, 126020. doi: https://doi.org/10.1016/j.conbuildmat.2021.126020
  • Vesely, D. Kalendova A., Victor Manso, M. (2012). Properties of calcined kaolins in anticorrosion paints depending on PVC, chemical composition and shape of particles. Progress in Organic Coatings, 74 (1), 82–91. doi: https://doi.org/10.1016/j.porgcoat.2011.11.017
  • Jamil, N. H., Abdullah, M. M. AB., Pa, F. C., Mohamad, H., Ibrahim, W. M., Chaiprapa, J. (2020). Influences of SiO2, Al2O3, CaO and MgO in phase transformation of sintered kaolin-ground granulated blast furnace slag geopolymer. Journal of Materials Research and Technology, 9 (6), 14922–14932. doi: https://doi.org/10.1016/j.jmrt.2020.10.045
  • Özcan, A., Özcan, A. A., Demirci, Y., Şener, E. (2017). Preparation of Fe2O3 modified kaolin and application in heterogeneous electro-catalytic oxidation of enoxacin. Applied Catalysis B: Environmenta, 200, 361–371. doi: https://doi.org/10.1016/j.apcatb.2016.07.018
  • Piva, D. H., Piva, J., Venturini, J., Ramon, J., Caldas, V., Morelli, M. R., Bergmann, C. P. (2016). Effect of Fe2O3 content on the electrical resistivity of aluminous porcelain applied to electrical insulators. Ceramics International, 42 (4) 5045–5052. doi: https://doi.org/10.1016/j.ceramint.2015.12.016
  • de Lima, O. A. L., Sharma, M. N. (1992). A generalized Maxwell‐Wagner theory for membrane polarization in shaly sands. Geophys, 57 (3), 431. doi: https://doi.org/10.1190/1.1443257
  • Piva, R. H. Vilarinho, P. MorelliM, M. R. Fiori, M. A. Montedo, O. R. K. (2013). Influence of Fe2O3 content on the dielectric behavior of aluminous porcelain insulators. Ceramics International, 39 (7), 7323–7330. doi: https://doi.org/10.1016/j.ceramint.2013.02.071
  • Bosman, A. J., Van Daal, H. J. (1970). Small-polaron versus band conduction in some transition-metal oxides. Advances in Physics, 19 (77), 1–117. doi: https://doi.org/10.1080/00018737000101071
  • Barsoukov, E., Macdonald, J. R. (2005). Impedance Spectroscopy: Theory, Experiment, and Applications. New York: Wiley. doi: https://doi.org/10.1002/0471716243
  • Elliot S. R. (1987). Temperature dependence of a.c. conductivity of chalcogenide glasses. Philosophical Magazine B, 37 (5), 553–560. doi: https://doi.org/10.1080/01418637808226448
  • Jonscher, A. K. (1992). Dielectric Relaxation in Solids. Journal of Physics D: Applied Physics, 32 (14), 57–70. doi: http://doi.org/10.1088/0022-3727/32/14/201
  • Bona, N., Rossi, E., Capaccioli, S. (2001). Electrical Measurements in the 100 Hz to 10 GHz Frequency Range for Efficient Rock Wettability Determination. SPE Journal 6 (01), 80–88. doi: https://doi.org/10.2118/69741-PA
  • Bouchehma, A., Essaleh, L., Marín, G., Essaleh, M., Wasim, S. M., Amhil, S. et. al. (2021). Physica B: Dielectric spectroscopy of n type Cu5In9Se16 semiconductor compound, Condensed Matter, 622, 413356. doi: https://doi.org/10.1016/j.physb.2021.413356
  • Bouferra, R., Marín, G., Amhil, S., Wasim, S., Essaleh, L. et. al. (2020). Electrical impedance spectroscopy characterization of n type Cu5In9Se16 semiconductor compound, Physica B: Condensed Matter, 593. doi: https://doi.org/10.1016/j.physb.2020.412283
  • Essaleh, L., Wasim, S. M., Marın, G., Rincon, C., Amhil, S., Galibert, J. (2017). Mott type variable range hopping conduction and magnetoresistance in p-type CuIn3Te5 semiconductor compound. Journal of Applied Physics 122. 015702. doi: https://doi.org/10.1063/1.4991004
  • Essaleh, L., Amhil, S., Wasim, S. M., Marín, G., Choukri, E. (2018). Theoretical and experimental study of AC electrical conduction mechanism in the low temperature range of p-CuIn3Se5. Physica E Low-dimensional Systems and Nanostructures, 99, 37–42. doi: https://doi.org/10.1016/j.physe.2018.01.012
  • Kirou, H., Atourkia, L., Essaleh, L., Taleb, A., Messous, M. Y., Bouabid, K., Nya, N., Ihlal, A. (2019). Towards phase pure Kesterite Cu2ZnSnS4 thin films via Cu-Zn-Sn electrodeposition under a variable applied potential. Journal of Alloys and Compounds, 783, 524–532. doi: https://doi.org/10.1016/j.jallcom.2018.12.269
  • Janek, M., Zich, D., Naftaly, M. (2014). Terahertz time-domain spectroscopy response of amines and amino acids intercalated smectites in far-infrared region. Materials Chemistry and Physics, 145, 278–287. doi: https://doi.org/10.1016/j.matchemphys.2014.02.004