Published October 28, 2021 | Version v1
Journal article Open

Intraspecific variation in thermal tolerance differs between tropical and temperate fishes

  • 1. Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow
  • 2. Marine Biological Section, Department of Biology, University of Copenhagen
  • 3. CNR-IAS, Italian National Research Council, Institute of Anthropic Impacts and Sustainability in the Marine Environment
  • 4. MARBEC, Université de Montpellier, CNRS
  • 5. CNR-IAS, Italian National Research Council

Description

How ectothermic animals will cope with global warming is a critical determinant of the ecological impacts of climate change. There has been extensive study of upper thermal tolerance limits among fish species but how intraspecific variation in tolerance may be affected by habitat characteristics and evolutionary history has not been considered. Intraspecific variation is a primary determinant of species vulnerability to climate change, with implications for global patterns of impacts of ongoing warming. Using published critical thermal maximum (CTmax) data on 203 fish species, we found that intraspecific variation in upper thermal tolerance varies according to a species’ latitude and evolutionary history. Overall, tropical species show a lower intraspecific variation in thermal tolerance than temperate species. Notably, freshwater tropical species have a lower variation in tolerance than freshwater temperate species, which implies increased vulnerability to impacts of thermal stress. The extent of variation in CTmax among fish species has a strong phylogenetic signal, which may indicate a constraint on evolvability to rising temperatures in tropical fishes. That is, in addition to living closer to their upper thermal limits, tropical species may have higher sensitivity and lower adaptability to global warming compared to temperate counterparts. This is evidence that freshwater tropical fish communities, worldwide, are especially vulnerable to ongoing climate change.

Files

Domenici-et-al-1.pdf

Files (1.6 MB)

Name Size Download all
md5:68975078ec9db9d802b5a629f57de858
1.6 MB Preview Download

Additional details

Funding

PANDORA – Paradigm for Novel Dynamic Oceanic Resource Assessments 773713
European Commission