A Risk Estimation Mechanism for Android Apps based on Hybrid Analysis
Description
Mobile apps represent essential tools in our daily routines, supporting us in almost every task. However, this assistance might imply a high cost in terms of privacy. Indeed, mobile apps gather a massive amount of data about individuals (e.g., users’ profiles and habits) and their devices (e.g., locations), where not all are strictly needed for app execution. According to privacy laws, apps’ providers must inform end-users on adopted data usage practices (e.g., which data are collected and for which purpose). Unfortunately, understanding these practices is a complex task for average end-users. The result is that they install apps without understanding their privacy implications. To support users in making more privacy-aware decisions on app usage, we propose a risk estimation approach based on an analysis of the app’s code. This analysis adopts a hybrid strategy, exploiting static and dynamic code analyses. Static analysis aims at discovering which personal data an app is collecting to determine whether the target app is asking more than required. This gives the first estimation of the app’s risk level. In addition, we also perform a dynamic analysis of the target app’s code. This further analysis helps determining whether the collected personal data is consumed locally on the mobile device or sent out to external services. If this happens, the risk level has to be increased, as personal data are more exposed. To prove the proposal’s effectiveness, we run several experiments involving different groups of participants. The obtained accuracy results are promising and outperform those obtained with static analysis only.
Files
A Risk Estimation Mechanism for Android Apps based on Hybrid Analysis.pdf
Files
(1.4 MB)
Name | Size | Download all |
---|---|---|
md5:7fb4782b0e082321aa1e349ab44ce268
|
1.4 MB | Preview Download |