Published January 2, 2016 | Version 1.0.0
Dataset Open

Normalized CT images and reference segmentations of thoracic and lumbar vertebrae from the CSI 2014 workshop

  • 1. Radboud University Medical Center Nijmegen

Description

This is the dataset of the vertebra segmentation challenge of the CSI 2014 workshop that was held in conjunction with MICCAI 2014.

  • 1-10: Training set, scans of 10 young adult (16-35 years old)
  • 11-15: Test set, scans of 5 young adult (20-35 years old)
  • 16-20: Test set, scans of 5 patients with vertebral compression fractures  

Scans were acquired at the Department of Radiological Sciences, University of California, Irvine, School of Medicine and were published under the ODC Public Domain Dedication and License on SpineWeb (datasets 2 and 15). The dataset and challenge is further described in this publication: A multi-center milestone study of clinical vertebral CT segmentation

The data that is published here has been normalized:

  • Voxel values are Hounsfield values and have been clipped to [-1000, 3095]
  • Image origin has been set to 0,0,0
  • Image orientation has been standardized to RAI orientation
  • Small islands and other obvious mistakes have been removed
  • Segmentation masks have been smoothed with a 2x2x2 median filter
  • Vertebrae have been anatomically labeled (8 = T1, 9 = T2, ..., 24 = L5)
  • Because not always all visible vertebrae were segmented in the original data, only segmentations of the thoracic and lumbar vertebrae have been retained

License

This dataset is released under the Open Data Commons Attribution License (which the original license allows me to do). When using this dataset for publication of any kind, please reference the following paper to meet the attribution requirement:

Yao J, Burns JE, Forsberg D, Seitel A, Rasoulian A, Abolmaesumi P, Hammernik K, Urschler M, Ibragimov B, Korez R, Vrtovec T, Castro-Mateos I, Pozo JM, Frangi AF, Summers RM, Li S. A multi-center milestone study of clinical vertebral CT segmentation. Comput Med Imaging Graph. 2016; 49:16-28. doi: 10.1016/j.compmedimag.2015.12.006.

There is no need to reference this upload, referencing the original authors is sufficient.

Notes

The dataset contains 2 cases with only 4 lumbar vertebrae in which L5/S1 has not been segmented (i.e., label 25 is missing).

The resolution and segmentation quality of the diseased cases (16-20) is quite low.

Files

01_thumbnail.png

Files (3.4 GB)

Name Size Download all
md5:0c5ea08a4074d2a65037ca0e537696d9
176.5 MB Download
md5:092f3eff3e6ec3e1730552325d2a38d9
1.3 MB Download
md5:114fe8507ff3868175db4fdc8a22fa73
895.9 kB Preview Download
md5:76ab01c0c47b03a9ad41189e83220aee
162.0 MB Download
md5:2ef2720357022437b6704e67f42485fc
1.2 MB Download
md5:8e5146599296fc53145f2fb473b64128
762.5 kB Preview Download
md5:877dd0297765a52b33d466ac61392e37
176.0 MB Download
md5:1161cb3c51685894e503f5a570180adf
1.5 MB Download
md5:ec7bca963ddad7c395e65de5659dd9ad
824.1 kB Preview Download
md5:f989f19fde61184d71a162904a845139
199.2 MB Download
md5:5786627516104c642427892a2ad9daac
1.5 MB Download
md5:8b695b73dd30b4d5adc1727422c7b0d5
1.1 MB Preview Download
md5:29d1219655707bf8d6efdc566803b76e
185.2 MB Download
md5:6989e1ff34a1386fd8905eda75be4562
1.4 MB Download
md5:76126cc7f721078d2104a76280288152
855.1 kB Preview Download
md5:a4f1a7c71da65b86cd7b3061980e8d32
176.5 MB Download
md5:29cc397458ccfc6255948c46c04ae984
1.4 MB Download
md5:3c51f19f9966c0fabb3278a5928efffa
896.5 kB Preview Download
md5:bb12aa1791fbcec59a38bb38aa0a2169
160.4 MB Download
md5:5d23072296c62ca37fd058181eb16cc2
1.2 MB Download
md5:47ad2e5c7c8c5875eb44d4d35a82079f
823.6 kB Preview Download
md5:d1fe1b5a67762c96163359935e50c910
168.2 MB Download
md5:ba1014c5c2c8f0363007fcd1404a603a
1.2 MB Download
md5:12812abaee6d560eeac028300b0382bf
820.1 kB Preview Download
md5:506c5d9968d232ee1c274bc333349149
184.9 MB Download
md5:da097c0bdaf510bb17ecdb5c246a16f8
1.3 MB Download
md5:625e7ce2352b0c21caf70b356df41741
1.0 MB Preview Download
md5:782ff9f72d99e0e0383e6e3cf5d6f60a
176.2 MB Download
md5:a9082de5287e947765350afa75c099b2
1.3 MB Download
md5:356cbcb66ea255a76f55087f9d0f45e3
864.7 kB Preview Download
md5:6ac502664e872ea2c7d1697d7dbf3253
171.9 MB Download
md5:4f32d084a587824be07b9250ff644cad
1.2 MB Download
md5:f95894706dd4032f270f2e4886ff9428
885.2 kB Preview Download
md5:8d083e7d7af57e68150418cd39f47c6e
200.2 MB Download
md5:a148b053776e7804748511bb25a3c109
1.5 MB Download
md5:90fd6c35de5aa220146de155bfee761e
1.0 MB Preview Download
md5:90f3b5764117f8ff3fe08f79b2474768
246.9 MB Download
md5:756386a86f63ca1d94550b429459ba12
1.8 MB Download
md5:86ac106f0b49f99ef1b05e2b31e35617
918.9 kB Preview Download
md5:35654f343de69cde5b6435ce40992037
171.7 MB Download
md5:af372ea3c6dc52402f830a1b359cffc3
1.3 MB Download
md5:7d7ee2a62cb3895e9da0f7cf3d44ae69
827.9 kB Preview Download
md5:32368c700ec7929e9575cfbb4e61a8b4
301.6 MB Download
md5:35c2a9a2ff0e2f5e8361f498371df111
2.1 MB Download
md5:6fa2027fa13bbbacf099298ca42162bc
1.1 MB Preview Download
md5:bc9ecf420679803e5e2a16412cbd1256
173.6 MB Download
md5:c00ccc7e1fae21b0fc3d0b2489c4e1fc
1.4 MB Download
md5:ffd391d80da5c4c9acafeed76ce03bad
915.8 kB Preview Download
md5:16af1cf8c2c993124fe1b2567acffc3a
85.0 MB Download
md5:5ece2d5aaa41c402d2580229420a8425
692.4 kB Download
md5:995dbb8a48b96dfc4ab66e352d25ca4a
711.2 kB Preview Download
md5:7a448aa59b58e4ced1db51d36d7ce46c
78.9 MB Download
md5:bfaf29c87d3d1ab9833d369d1e2d6f80
597.1 kB Download
md5:a7bc0bfed02d84fe76260817dfdc25d6
647.8 kB Preview Download
md5:0728e166eb53322ffda51f0b4fd7c3c3
82.7 MB Download
md5:f9440771cbb4f7526c258d0b0c0fdd21
634.8 kB Download
md5:7bde8b237019f132fdde116d6db74768
688.8 kB Preview Download
md5:fca195f2321265f2836cd897e3dd146a
70.0 MB Download
md5:b86e6dc8f9156e91626750e841fd4f58
552.7 kB Download
md5:e603d158edc1ac03925ce6878248e183
627.7 kB Preview Download

Additional details

Related works

Is described by
Journal article: 10.1016/j.compmedimag.2015.12.006 (DOI)